Matches in SemOpenAlex for { <https://semopenalex.org/work/W1719311894> ?p ?o ?g. }
- W1719311894 endingPage "86" @default.
- W1719311894 startingPage "43" @default.
- W1719311894 abstract "Introduction Ancient depictions of fluids, going back to the Minoans, envisaged waves and moving streams. They missed what we would call vortices and turbulence. The first artist to depict the rotational properties of fluids, vortical motion and turbulent flows was da Vinci (1506 to 1510). He would recognize the term vortical motion as it comes from the Latin vortere or vertere: to turn, meaning that vorticity is where a gas or liquid is rapidly turning or spiraling. Mathematically, one represents this effect as twists in the velocity derivative, that is the curl or the anti-symmetric component of the velocity gradient tensor. If the velocity field is u , then for the vorticity is ω = ∇ × u . The aspect of turbulence which this chapter will focus upon is the structure, dynamics and evolution of vorticity in idealized turbulence – either the products of homogeneous, isotropic, statistically stationary states in forced, periodic simulations, or flows using idealized initial conditions designed to let us understand those states. The isotropic state is often viewed as a tangle of vorticity (at least when the amplitudes are large), an example of which is given in Fig. 2.1. This visualization shows isosurfaces of the magnitude of the vorticity, and similar techniques have been discussed before (see e.g. Pullin and Saffman, 1998; Ishihara et al., 2009; Tsinober, 2009). The goal of this chapter is to relate these graphics to basic relations between the vorticity and strain, to how this subject has evolved to using vorticity as a measure of regularity, then focus on the structure and dynamics of vorticity in turbulence, in experiments and numerical investigations, before considering theoretical explanations. Our discussions will focus upon three-dimensional turbulence." @default.
- W1719311894 created "2016-06-24" @default.
- W1719311894 creator A5005389553 @default.
- W1719311894 creator A5008993197 @default.
- W1719311894 creator A5036290082 @default.
- W1719311894 date "2013-02-05" @default.
- W1719311894 modified "2023-09-27" @default.
- W1719311894 title "Structure and Dynamics of Vorticity in Turbulence" @default.
- W1719311894 cites W1057021034 @default.
- W1719311894 cites W1594927479 @default.
- W1719311894 cites W1615483919 @default.
- W1719311894 cites W1650661195 @default.
- W1719311894 cites W194523144 @default.
- W1719311894 cites W1963480332 @default.
- W1719311894 cites W1966675000 @default.
- W1719311894 cites W1967070847 @default.
- W1719311894 cites W1968654268 @default.
- W1719311894 cites W1971672900 @default.
- W1719311894 cites W1974698144 @default.
- W1719311894 cites W1975632801 @default.
- W1719311894 cites W1976303384 @default.
- W1719311894 cites W1979176272 @default.
- W1719311894 cites W1980361848 @default.
- W1719311894 cites W1980885220 @default.
- W1719311894 cites W1982218802 @default.
- W1719311894 cites W1982252236 @default.
- W1719311894 cites W1983676474 @default.
- W1719311894 cites W1986308483 @default.
- W1719311894 cites W1986417027 @default.
- W1719311894 cites W1987488517 @default.
- W1719311894 cites W1991904673 @default.
- W1719311894 cites W1993911421 @default.
- W1719311894 cites W1996247372 @default.
- W1719311894 cites W1996830266 @default.
- W1719311894 cites W1996952201 @default.
- W1719311894 cites W1997218130 @default.
- W1719311894 cites W1999844482 @default.
- W1719311894 cites W2003067321 @default.
- W1719311894 cites W2004876030 @default.
- W1719311894 cites W2004913906 @default.
- W1719311894 cites W2006378206 @default.
- W1719311894 cites W2009277640 @default.
- W1719311894 cites W2010383766 @default.
- W1719311894 cites W2014618202 @default.
- W1719311894 cites W2017032494 @default.
- W1719311894 cites W2020514832 @default.
- W1719311894 cites W2020569828 @default.
- W1719311894 cites W2024675657 @default.
- W1719311894 cites W2025356720 @default.
- W1719311894 cites W2027647073 @default.
- W1719311894 cites W2031199937 @default.
- W1719311894 cites W2034028833 @default.
- W1719311894 cites W2036630563 @default.
- W1719311894 cites W2036933802 @default.
- W1719311894 cites W2040564521 @default.
- W1719311894 cites W2041213761 @default.
- W1719311894 cites W2041610574 @default.
- W1719311894 cites W2043024130 @default.
- W1719311894 cites W2043627769 @default.
- W1719311894 cites W2045928936 @default.
- W1719311894 cites W2046781374 @default.
- W1719311894 cites W2053345819 @default.
- W1719311894 cites W2056000838 @default.
- W1719311894 cites W2059113916 @default.
- W1719311894 cites W2060667291 @default.
- W1719311894 cites W2062702302 @default.
- W1719311894 cites W2063181514 @default.
- W1719311894 cites W2063615912 @default.
- W1719311894 cites W2067045048 @default.
- W1719311894 cites W2067093814 @default.
- W1719311894 cites W2067292432 @default.
- W1719311894 cites W2067696760 @default.
- W1719311894 cites W2069912449 @default.
- W1719311894 cites W2071571287 @default.
- W1719311894 cites W2076072472 @default.
- W1719311894 cites W2078408948 @default.
- W1719311894 cites W2080800998 @default.
- W1719311894 cites W2080824940 @default.
- W1719311894 cites W2082744917 @default.
- W1719311894 cites W2098094248 @default.
- W1719311894 cites W2098652885 @default.
- W1719311894 cites W2102457342 @default.
- W1719311894 cites W2104055838 @default.
- W1719311894 cites W2107420132 @default.
- W1719311894 cites W2115474438 @default.
- W1719311894 cites W2115755118 @default.
- W1719311894 cites W2123737582 @default.
- W1719311894 cites W2128380567 @default.
- W1719311894 cites W2129891976 @default.
- W1719311894 cites W2129956165 @default.
- W1719311894 cites W2130339663 @default.
- W1719311894 cites W2131048263 @default.
- W1719311894 cites W2135045092 @default.
- W1719311894 cites W2139352946 @default.
- W1719311894 cites W2144104945 @default.
- W1719311894 cites W2156020408 @default.
- W1719311894 cites W2158940042 @default.
- W1719311894 cites W2168609204 @default.