Matches in SemOpenAlex for { <https://semopenalex.org/work/W172019312> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W172019312 abstract "The rubber tree (Hevea brasiliensis) is grown extensively in South-East Asia, especially in Malaysia, for the production of natural rubber and, increasingly, timber. However, rubber tree generally attacked by pests or diseases such as root disease, white root, red root, brown root, leaf disease and the others. In this study, four types of diseases will be seen namely Fusicoccum, Corynespora, Collelotrichum and Oidium. Generally known that neural networks may be used for nonlinear analysis of complex data. As such, the purpose of this study is to evaluate the usefulness of Artificial Neural Networks (ANNs) applied to rubber tree for diseases detection. The ANNs used in the present study were based on a feed forward layered model with input, hidden, and output layers, on which a backpropagation learning model was implemented. The focus of study also to investigate the effect of activation functions on accuracy, efficiency and performance of disease detection. Four activation functions will be compare which are Hyperbolic Tangent Sigmoid, Linear, Radial Basis and Triangular. This study also will be focus on how to convert an image data to the conventional input data. The preprocessing process of the sample image such as image enhancement, image filtering has been performed before the process feature extraction will be applied. The techniques that will be used for feature extraction of image using the gabor filter method. The output of this filter will be used for the classification purpose in order to determine the characteristics of rubber tree diseases image. 10-fold cross validation techniques will be applied in order to measure the percentage of accurately of this classifier." @default.
- W172019312 created "2016-06-24" @default.
- W172019312 creator A5063458733 @default.
- W172019312 date "2011-05-01" @default.
- W172019312 modified "2023-09-27" @default.
- W172019312 title "Comparative study on the effect of activation functions in neural network for rubber tree diseases detection" @default.
- W172019312 hasPublicationYear "2011" @default.
- W172019312 type Work @default.
- W172019312 sameAs 172019312 @default.
- W172019312 citedByCount "0" @default.
- W172019312 crossrefType "dissertation" @default.
- W172019312 hasAuthorship W172019312A5063458733 @default.
- W172019312 hasConcept C113174947 @default.
- W172019312 hasConcept C115961682 @default.
- W172019312 hasConcept C134306372 @default.
- W172019312 hasConcept C153180895 @default.
- W172019312 hasConcept C154945302 @default.
- W172019312 hasConcept C155032097 @default.
- W172019312 hasConcept C159985019 @default.
- W172019312 hasConcept C176933379 @default.
- W172019312 hasConcept C192562407 @default.
- W172019312 hasConcept C2779539549 @default.
- W172019312 hasConcept C2780034618 @default.
- W172019312 hasConcept C33923547 @default.
- W172019312 hasConcept C34736171 @default.
- W172019312 hasConcept C41008148 @default.
- W172019312 hasConcept C50644808 @default.
- W172019312 hasConcept C52622490 @default.
- W172019312 hasConcept C9417928 @default.
- W172019312 hasConceptScore W172019312C113174947 @default.
- W172019312 hasConceptScore W172019312C115961682 @default.
- W172019312 hasConceptScore W172019312C134306372 @default.
- W172019312 hasConceptScore W172019312C153180895 @default.
- W172019312 hasConceptScore W172019312C154945302 @default.
- W172019312 hasConceptScore W172019312C155032097 @default.
- W172019312 hasConceptScore W172019312C159985019 @default.
- W172019312 hasConceptScore W172019312C176933379 @default.
- W172019312 hasConceptScore W172019312C192562407 @default.
- W172019312 hasConceptScore W172019312C2779539549 @default.
- W172019312 hasConceptScore W172019312C2780034618 @default.
- W172019312 hasConceptScore W172019312C33923547 @default.
- W172019312 hasConceptScore W172019312C34736171 @default.
- W172019312 hasConceptScore W172019312C41008148 @default.
- W172019312 hasConceptScore W172019312C50644808 @default.
- W172019312 hasConceptScore W172019312C52622490 @default.
- W172019312 hasConceptScore W172019312C9417928 @default.
- W172019312 hasLocation W1720193121 @default.
- W172019312 hasOpenAccess W172019312 @default.
- W172019312 hasPrimaryLocation W1720193121 @default.
- W172019312 hasRelatedWork W1529657751 @default.
- W172019312 hasRelatedWork W1968896562 @default.
- W172019312 hasRelatedWork W1974887910 @default.
- W172019312 hasRelatedWork W1989597433 @default.
- W172019312 hasRelatedWork W199724539 @default.
- W172019312 hasRelatedWork W2056421388 @default.
- W172019312 hasRelatedWork W2108161184 @default.
- W172019312 hasRelatedWork W2144218027 @default.
- W172019312 hasRelatedWork W2158599326 @default.
- W172019312 hasRelatedWork W2164266998 @default.
- W172019312 hasRelatedWork W2442930818 @default.
- W172019312 hasRelatedWork W2564320020 @default.
- W172019312 hasRelatedWork W2777565363 @default.
- W172019312 hasRelatedWork W2976282159 @default.
- W172019312 hasRelatedWork W2980268141 @default.
- W172019312 hasRelatedWork W2980347326 @default.
- W172019312 hasRelatedWork W3100991676 @default.
- W172019312 hasRelatedWork W3202689887 @default.
- W172019312 hasRelatedWork W2134343239 @default.
- W172019312 hasRelatedWork W2147179264 @default.
- W172019312 isParatext "false" @default.
- W172019312 isRetracted "false" @default.
- W172019312 magId "172019312" @default.
- W172019312 workType "dissertation" @default.