Matches in SemOpenAlex for { <https://semopenalex.org/work/W172325051> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W172325051 endingPage "240" @default.
- W172325051 startingPage "227" @default.
- W172325051 abstract "It is known that multiquadric radial basis function approximations can reproduce low order polynomials when the centres form an infinite regular lattice. We make a start on the interesting question of extending this result in a way that allows the centres to be in less restrictive positions. Specifically, univariate multiquadric approximations are studied when the only conditions on the centres are that they are not bounded above or below. We find that all linear polynomials can be reproduced on IR, which is a simple conclusion if the multiquadrics degenerate to piecewise linear functions. Our method of analysis depends on a Peano kernel formulation of linear combinations of second divided differences, a crucial point being that it is necessary to employ differences in order that certain infinite sums are absolutely convergent. It seems that standard methods cannot be used to identify the linear space that is spanned by the multiquadric functions, partly because it is shown that this space provides uniform convergence to any continuous function on any finite interval of the real line." @default.
- W172325051 created "2016-06-24" @default.
- W172325051 creator A5012247591 @default.
- W172325051 date "1990-01-01" @default.
- W172325051 modified "2023-09-27" @default.
- W172325051 title "Univariate Multiquadric Approximation: Reproduction of Linear Polynomials" @default.
- W172325051 cites W2086000886 @default.
- W172325051 cites W2095769364 @default.
- W172325051 cites W4230445183 @default.
- W172325051 doi "https://doi.org/10.1007/978-3-0348-5685-0_17" @default.
- W172325051 hasPublicationYear "1990" @default.
- W172325051 type Work @default.
- W172325051 sameAs 172325051 @default.
- W172325051 citedByCount "23" @default.
- W172325051 countsByYear W1723250512013 @default.
- W172325051 countsByYear W1723250512014 @default.
- W172325051 countsByYear W1723250512016 @default.
- W172325051 countsByYear W1723250512017 @default.
- W172325051 countsByYear W1723250512019 @default.
- W172325051 countsByYear W1723250512021 @default.
- W172325051 countsByYear W1723250512022 @default.
- W172325051 countsByYear W1723250512023 @default.
- W172325051 crossrefType "book-chapter" @default.
- W172325051 hasAuthorship W172325051A5012247591 @default.
- W172325051 hasBestOaLocation W1723250512 @default.
- W172325051 hasConcept C105795698 @default.
- W172325051 hasConcept C134306372 @default.
- W172325051 hasConcept C161584116 @default.
- W172325051 hasConcept C17095337 @default.
- W172325051 hasConcept C199163554 @default.
- W172325051 hasConcept C202444582 @default.
- W172325051 hasConcept C28826006 @default.
- W172325051 hasConcept C33923547 @default.
- W172325051 hasConcept C34388435 @default.
- W172325051 hasConceptScore W172325051C105795698 @default.
- W172325051 hasConceptScore W172325051C134306372 @default.
- W172325051 hasConceptScore W172325051C161584116 @default.
- W172325051 hasConceptScore W172325051C17095337 @default.
- W172325051 hasConceptScore W172325051C199163554 @default.
- W172325051 hasConceptScore W172325051C202444582 @default.
- W172325051 hasConceptScore W172325051C28826006 @default.
- W172325051 hasConceptScore W172325051C33923547 @default.
- W172325051 hasConceptScore W172325051C34388435 @default.
- W172325051 hasLocation W1723250511 @default.
- W172325051 hasLocation W1723250512 @default.
- W172325051 hasOpenAccess W172325051 @default.
- W172325051 hasPrimaryLocation W1723250511 @default.
- W172325051 hasRelatedWork W1994222927 @default.
- W172325051 hasRelatedWork W1997449464 @default.
- W172325051 hasRelatedWork W2018828049 @default.
- W172325051 hasRelatedWork W2042726902 @default.
- W172325051 hasRelatedWork W2046712581 @default.
- W172325051 hasRelatedWork W2053419661 @default.
- W172325051 hasRelatedWork W2108371780 @default.
- W172325051 hasRelatedWork W2136053165 @default.
- W172325051 hasRelatedWork W3102909640 @default.
- W172325051 hasRelatedWork W4200344974 @default.
- W172325051 isParatext "false" @default.
- W172325051 isRetracted "false" @default.
- W172325051 magId "172325051" @default.
- W172325051 workType "book-chapter" @default.