Matches in SemOpenAlex for { <https://semopenalex.org/work/W172761837> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W172761837 endingPage "16" @default.
- W172761837 startingPage "10" @default.
- W172761837 abstract "Abstract - Most of the direct-cover Boolean minimization techniques use a four step cyclic algorithm. First, the algorithm chooses an On-minterm; second, it generates the set of prime implicants that covers the chosen minterm; third, it identifies the essential prime implicant; and fourth, it performs a covering operation. In this study, we focus on the third step and propose a new essential prime implicant identification method. In this method, when the identification of the essential prime implicant is impossible, we postpone dealing with current On-minterm and save a status word for it. Eventually, we retrieve the status words whenever a new essential prime implicant is identified. We compared the proposed minimization method with ESPRESSO-EXACT. The results show that our method obtains exact results faster than other ones. Keywords: Logic minimization, prime implicant, branch and bound technique, cover. 1 Introduction Two-level logic minimization is a basic problem in logic synthesis [1]. Due to the exponential nature of this problem, state-of-the-art algorithms can typically handle functions with up to hundred products [2]. Therefore, most of the practical applications rely on heuristic minimization methods [2,3] with a complexity which is roughly quadratic in the number of products. There are also methods that produce the optimal (exact) solutions [1,2,3,4]. However, they can only be used for consistently small SOP realizations since they take long run time (CPU time) to find the final result. Heuristic algorithms are noticeably faster than the exact ones; however, they are still noticeably slow considering the exponential nature of the problem and they do not always obtain the optimal solutions [2]. Furthermore, the heuristic algorithms display diversity in realizations. That is, no single heuristic algorithm is consistently better than the others for all logic functions. There are classes of functions where one heuristic algorithm is better than the others [3]. Our studies show that the diversities in realizations of heuristic algorithms arise from the imperfect rules used for the identification of the essential prime implicant (EPI). In this study, we propose a new EPI identification method that obtains exact minimal solutions. Our minimization algorithm randomly chooses an On-minterm to be handled (named as target minterm (TM)) from the On-set of the function being minimized. It obtains the set of prime implicants that include TM. If this set consists of a single PI this our algorithm selects this PI as EPI to cover the On-set. If there is more than one PI then, to find the EPI, we apply a rule, which selects the PI that covers all On-minterms included by other PIs. If such a PI does not exist in the set then we form a status word (MSW) for the current TM and for the PIs that include this TM. We use MSWs to obtain a new EPI. This procedure is repeated until all of the On-minterms are covered. Our algorithm has the following differences than the existing ones. First, it is invariant to PIs generating method. Second, the minterm handling order can have a little effect on runtime, but it does not affect the final result. Third, it works in only one loop. Therefore, it is as fast as any heuristic one but generates only exact results. The rest of the paper is organized as follows: The next section lists the abbreviations and notations used in this paper. Section 3 discusses branch-and-bound technique based EPI identification rules and their problems. Section 4 presents our approach. Section 5 gives the experimental data. Finally, Section 6 concludes this paper." @default.
- W172761837 created "2016-06-24" @default.
- W172761837 creator A5029792511 @default.
- W172761837 creator A5044482167 @default.
- W172761837 date "2006-01-01" @default.
- W172761837 modified "2023-09-23" @default.
- W172761837 title "A Novel Essential Prime Implicant Identification Method for Exact Direct Cover Logic Minimization." @default.
- W172761837 cites W1984029699 @default.
- W172761837 cites W2046132190 @default.
- W172761837 cites W2061510426 @default.
- W172761837 cites W2082448265 @default.
- W172761837 cites W2105761964 @default.
- W172761837 cites W2136185430 @default.
- W172761837 cites W2155702064 @default.
- W172761837 cites W2155813482 @default.
- W172761837 cites W2419205472 @default.
- W172761837 cites W2970264471 @default.
- W172761837 cites W336411274 @default.
- W172761837 hasPublicationYear "2006" @default.
- W172761837 type Work @default.
- W172761837 sameAs 172761837 @default.
- W172761837 citedByCount "1" @default.
- W172761837 crossrefType "journal-article" @default.
- W172761837 hasAuthorship W172761837A5029792511 @default.
- W172761837 hasAuthorship W172761837A5044482167 @default.
- W172761837 hasConcept C102487863 @default.
- W172761837 hasConcept C11413529 @default.
- W172761837 hasConcept C114614502 @default.
- W172761837 hasConcept C116834253 @default.
- W172761837 hasConcept C126255220 @default.
- W172761837 hasConcept C127413603 @default.
- W172761837 hasConcept C147764199 @default.
- W172761837 hasConcept C154945302 @default.
- W172761837 hasConcept C158465420 @default.
- W172761837 hasConcept C173801870 @default.
- W172761837 hasConcept C184992742 @default.
- W172761837 hasConcept C187455244 @default.
- W172761837 hasConcept C2780428219 @default.
- W172761837 hasConcept C33923547 @default.
- W172761837 hasConcept C41008148 @default.
- W172761837 hasConcept C59822182 @default.
- W172761837 hasConcept C78519656 @default.
- W172761837 hasConcept C86803240 @default.
- W172761837 hasConcept C94375191 @default.
- W172761837 hasConceptScore W172761837C102487863 @default.
- W172761837 hasConceptScore W172761837C11413529 @default.
- W172761837 hasConceptScore W172761837C114614502 @default.
- W172761837 hasConceptScore W172761837C116834253 @default.
- W172761837 hasConceptScore W172761837C126255220 @default.
- W172761837 hasConceptScore W172761837C127413603 @default.
- W172761837 hasConceptScore W172761837C147764199 @default.
- W172761837 hasConceptScore W172761837C154945302 @default.
- W172761837 hasConceptScore W172761837C158465420 @default.
- W172761837 hasConceptScore W172761837C173801870 @default.
- W172761837 hasConceptScore W172761837C184992742 @default.
- W172761837 hasConceptScore W172761837C187455244 @default.
- W172761837 hasConceptScore W172761837C2780428219 @default.
- W172761837 hasConceptScore W172761837C33923547 @default.
- W172761837 hasConceptScore W172761837C41008148 @default.
- W172761837 hasConceptScore W172761837C59822182 @default.
- W172761837 hasConceptScore W172761837C78519656 @default.
- W172761837 hasConceptScore W172761837C86803240 @default.
- W172761837 hasConceptScore W172761837C94375191 @default.
- W172761837 hasLocation W1727618371 @default.
- W172761837 hasOpenAccess W172761837 @default.
- W172761837 hasPrimaryLocation W1727618371 @default.
- W172761837 hasRelatedWork W1553819740 @default.
- W172761837 hasRelatedWork W1575952719 @default.
- W172761837 hasRelatedWork W166093442 @default.
- W172761837 hasRelatedWork W172810378 @default.
- W172761837 hasRelatedWork W195687029 @default.
- W172761837 hasRelatedWork W1984038497 @default.
- W172761837 hasRelatedWork W2075715347 @default.
- W172761837 hasRelatedWork W2082738287 @default.
- W172761837 hasRelatedWork W2150056850 @default.
- W172761837 hasRelatedWork W2480466848 @default.
- W172761837 hasRelatedWork W2558119813 @default.
- W172761837 hasRelatedWork W2767653261 @default.
- W172761837 hasRelatedWork W2778728514 @default.
- W172761837 hasRelatedWork W2784358381 @default.
- W172761837 hasRelatedWork W2891596554 @default.
- W172761837 hasRelatedWork W2896590268 @default.
- W172761837 hasRelatedWork W2902429830 @default.
- W172761837 hasRelatedWork W2924313066 @default.
- W172761837 hasRelatedWork W3081400764 @default.
- W172761837 hasRelatedWork W340463834 @default.
- W172761837 isParatext "false" @default.
- W172761837 isRetracted "false" @default.
- W172761837 magId "172761837" @default.
- W172761837 workType "article" @default.