Matches in SemOpenAlex for { <https://semopenalex.org/work/W1728536600> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1728536600 abstract "To learn (statistical) dependencies among random variables requires exponentially large sample size in the number of observed random variables if any arbitrary joint probability distribution can occur. We consider the case that sparse data strongly suggest that the probabilities can be described by a simple Bayesian network, i.e., by a graph with small in-degree Delta. Then this simple law will also explain further data with high confidence. This is shown by calculating bounds on the VC dimension of the set of those probability measures that correspond to simple graphs. This allows to select networks by structural risk minimization and gives reliability bounds on the error of the estimated joint measure without (in contrast to a previous paper) any prior assumptions on the set of possible joint measures. The complexity for searching the optimal Bayesian networks of in-degree Delta increases only polynomially in the number of random varibales for constant Delta and the optimal joint measure associated with a given graph can be found by convex optimization." @default.
- W1728536600 created "2016-06-24" @default.
- W1728536600 creator A5009624228 @default.
- W1728536600 creator A5013941262 @default.
- W1728536600 date "2003-09-10" @default.
- W1728536600 modified "2023-09-27" @default.
- W1728536600 title "Reliable and Efficient Inference of Bayesian Networks from Sparse Data by Statistical Learning Theory" @default.
- W1728536600 cites W1615303083 @default.
- W1728536600 cites W2029538739 @default.
- W1728536600 cites W2099111195 @default.
- W1728536600 cites W2148603752 @default.
- W1728536600 cites W2156909104 @default.
- W1728536600 cites W3000459232 @default.
- W1728536600 cites W3133236490 @default.
- W1728536600 cites W3201444869 @default.
- W1728536600 cites W58439901 @default.
- W1728536600 cites W68005165 @default.
- W1728536600 hasPublicationYear "2003" @default.
- W1728536600 type Work @default.
- W1728536600 sameAs 1728536600 @default.
- W1728536600 citedByCount "0" @default.
- W1728536600 crossrefType "posted-content" @default.
- W1728536600 hasAuthorship W1728536600A5009624228 @default.
- W1728536600 hasAuthorship W1728536600A5013941262 @default.
- W1728536600 hasConcept C105795698 @default.
- W1728536600 hasConcept C111472728 @default.
- W1728536600 hasConcept C114614502 @default.
- W1728536600 hasConcept C122123141 @default.
- W1728536600 hasConcept C124101348 @default.
- W1728536600 hasConcept C134261354 @default.
- W1728536600 hasConcept C138885662 @default.
- W1728536600 hasConcept C154945302 @default.
- W1728536600 hasConcept C155846161 @default.
- W1728536600 hasConcept C18653775 @default.
- W1728536600 hasConcept C2776214188 @default.
- W1728536600 hasConcept C2780009758 @default.
- W1728536600 hasConcept C2780586882 @default.
- W1728536600 hasConcept C33676613 @default.
- W1728536600 hasConcept C33724603 @default.
- W1728536600 hasConcept C33923547 @default.
- W1728536600 hasConcept C41008148 @default.
- W1728536600 hasConceptScore W1728536600C105795698 @default.
- W1728536600 hasConceptScore W1728536600C111472728 @default.
- W1728536600 hasConceptScore W1728536600C114614502 @default.
- W1728536600 hasConceptScore W1728536600C122123141 @default.
- W1728536600 hasConceptScore W1728536600C124101348 @default.
- W1728536600 hasConceptScore W1728536600C134261354 @default.
- W1728536600 hasConceptScore W1728536600C138885662 @default.
- W1728536600 hasConceptScore W1728536600C154945302 @default.
- W1728536600 hasConceptScore W1728536600C155846161 @default.
- W1728536600 hasConceptScore W1728536600C18653775 @default.
- W1728536600 hasConceptScore W1728536600C2776214188 @default.
- W1728536600 hasConceptScore W1728536600C2780009758 @default.
- W1728536600 hasConceptScore W1728536600C2780586882 @default.
- W1728536600 hasConceptScore W1728536600C33676613 @default.
- W1728536600 hasConceptScore W1728536600C33724603 @default.
- W1728536600 hasConceptScore W1728536600C33923547 @default.
- W1728536600 hasConceptScore W1728536600C41008148 @default.
- W1728536600 hasLocation W17285366001 @default.
- W1728536600 hasOpenAccess W1728536600 @default.
- W1728536600 hasPrimaryLocation W17285366001 @default.
- W1728536600 hasRelatedWork W1497836422 @default.
- W1728536600 hasRelatedWork W1508306565 @default.
- W1728536600 hasRelatedWork W160592848 @default.
- W1728536600 hasRelatedWork W1615303083 @default.
- W1728536600 hasRelatedWork W1877816532 @default.
- W1728536600 hasRelatedWork W1968425377 @default.
- W1728536600 hasRelatedWork W1975651423 @default.
- W1728536600 hasRelatedWork W1987051875 @default.
- W1728536600 hasRelatedWork W2098204348 @default.
- W1728536600 hasRelatedWork W2147872046 @default.
- W1728536600 hasRelatedWork W2158921525 @default.
- W1728536600 hasRelatedWork W2177388283 @default.
- W1728536600 hasRelatedWork W2292479476 @default.
- W1728536600 hasRelatedWork W2306769744 @default.
- W1728536600 hasRelatedWork W2615839807 @default.
- W1728536600 hasRelatedWork W2949266782 @default.
- W1728536600 hasRelatedWork W3176418578 @default.
- W1728536600 hasRelatedWork W3208578881 @default.
- W1728536600 hasRelatedWork W325704130 @default.
- W1728536600 hasRelatedWork W68005165 @default.
- W1728536600 isParatext "false" @default.
- W1728536600 isRetracted "false" @default.
- W1728536600 magId "1728536600" @default.
- W1728536600 workType "article" @default.