Matches in SemOpenAlex for { <https://semopenalex.org/work/W1729421428> ?p ?o ?g. }
- W1729421428 abstract "Nanotechnology design has attracted considerable attention in recent years and seems to be the technology for the future generation of the electronic devices, either as scaled and more restricted conventional lithographic technology, or as emerging sublithographic technologies, such as nanowires, carbon nanotubes, NDR (Negative Differential Resistance) devices, or other nanotechnology devices. Each of these technologies provides one or more design benefits including feature-size scaling, high on-off ratios, and faster devices. However, all of these techniques share their most challenging design issue: reliability. Providing reliability is becoming constantly more challenging due to increases in both the device failure rate and system complexity. This work develops techniques that make achieving reliability in such systems feasible with practical area overhead and considerable improvement in area overhead and system reliability compared to related techniques. Conventional reliability techniques focus on low defect and fault rates, i.e., single event upset (SEU). These techniques cannot simply be scaled to larger systems with more unreliable devices. If these techniques are directly applied to the high defect and fault rate of the nanotechnology regime, they suffer impractically high overhead, or they may not achieve the desired reliability. Our approach in this thesis exploits the following design patterns to achieve a considerable area reduction compared to related works and achieve high reliability: (1) Fine-grained reliability: In this technique, the system is partitioned into fine-grained blocks, and the reliability is provided for each block. This technique is used to contain the area overhead and bound the impact on the throughput. (2) Using alternative resources: This technique improves the design quality by sparing other resources when system is tight on one resource. In our work we replace some of the spacial redundancies with temporal redundancy to limit the area overhead. We further improve the system throughput to limit the throughput cost as well. (3) Defect pattern matching: With this techniques, the defective resources are located and the design is reconfigured considering the defect pattern of the chip. Then the design configuration is mapped to the chip. This technique isolates the defective resources and make use of most of defect free resources. (4) Global reliability: This technique is used to unify the reliability techniques used in different parts of the system. When using one unified technique to protect the system, the area overhead provided to protect one resource can be reused to protect other resources as well. In the present work, we report considerable improvement in the area overhead using the above techniques. We show that using Fine-Grained Reliability, Alternative Resources, and Defect Pattern Matching, high permanent defect rates (e.g., 10%) which is the result of imperfect manufacturing can be tolerated with moderate area overhead (about 30% on average for typical designs). Again Using Alternative Resources and Fine-Grained Reliability improve the area overhead of the transient fault-tolerant designs by close to an order of magnitude compared to recent reliable works. Finally we report a fully reliable memory system that employs a Global Reliability scheme to tolerate permanent defects and transient faults, both in the memory and in the supporting logic and still achieves 100 Gbit/cm2 density for fault rate of 10−18 errors per bit per cycle and 10% junction defect rate." @default.
- W1729421428 created "2016-06-24" @default.
- W1729421428 creator A5034055695 @default.
- W1729421428 creator A5087585086 @default.
- W1729421428 date "2008-01-01" @default.
- W1729421428 modified "2023-09-26" @default.
- W1729421428 title "Reliable integration of terascale systems with nanoscale devices" @default.
- W1729421428 cites W10024309 @default.
- W1729421428 cites W1482405292 @default.
- W1729421428 cites W1502534336 @default.
- W1729421428 cites W1651818244 @default.
- W1729421428 cites W1910152906 @default.
- W1729421428 cites W1935014183 @default.
- W1729421428 cites W1960026154 @default.
- W1729421428 cites W1966325235 @default.
- W1729421428 cites W1967180584 @default.
- W1729421428 cites W1983346512 @default.
- W1729421428 cites W1985555064 @default.
- W1729421428 cites W2005261685 @default.
- W1729421428 cites W2019219628 @default.
- W1729421428 cites W2020731716 @default.
- W1729421428 cites W2022829874 @default.
- W1729421428 cites W2030496130 @default.
- W1729421428 cites W2043557016 @default.
- W1729421428 cites W2047507725 @default.
- W1729421428 cites W2050111978 @default.
- W1729421428 cites W2054254680 @default.
- W1729421428 cites W2055929948 @default.
- W1729421428 cites W2057465926 @default.
- W1729421428 cites W2061991384 @default.
- W1729421428 cites W2062047511 @default.
- W1729421428 cites W2063782027 @default.
- W1729421428 cites W2072104361 @default.
- W1729421428 cites W2092333682 @default.
- W1729421428 cites W2096112929 @default.
- W1729421428 cites W2096927458 @default.
- W1729421428 cites W2099708835 @default.
- W1729421428 cites W2100903675 @default.
- W1729421428 cites W2101205270 @default.
- W1729421428 cites W2104414815 @default.
- W1729421428 cites W2105761964 @default.
- W1729421428 cites W2107436335 @default.
- W1729421428 cites W2108030226 @default.
- W1729421428 cites W2109824347 @default.
- W1729421428 cites W2110891770 @default.
- W1729421428 cites W2114509411 @default.
- W1729421428 cites W2114869758 @default.
- W1729421428 cites W2120185818 @default.
- W1729421428 cites W2120781477 @default.
- W1729421428 cites W2121920990 @default.
- W1729421428 cites W2122819799 @default.
- W1729421428 cites W2124334694 @default.
- W1729421428 cites W2126082910 @default.
- W1729421428 cites W2127178251 @default.
- W1729421428 cites W2133687702 @default.
- W1729421428 cites W2137249916 @default.
- W1729421428 cites W2138154461 @default.
- W1729421428 cites W2139399616 @default.
- W1729421428 cites W2143414542 @default.
- W1729421428 cites W2147004330 @default.
- W1729421428 cites W2150972708 @default.
- W1729421428 cites W2151612258 @default.
- W1729421428 cites W2154130651 @default.
- W1729421428 cites W2156539324 @default.
- W1729421428 cites W2161140966 @default.
- W1729421428 cites W2162983760 @default.
- W1729421428 cites W2164492816 @default.
- W1729421428 cites W2167086449 @default.
- W1729421428 cites W2169213530 @default.
- W1729421428 cites W2171324447 @default.
- W1729421428 cites W2172024812 @default.
- W1729421428 cites W2497735908 @default.
- W1729421428 cites W270615609 @default.
- W1729421428 cites W2951062193 @default.
- W1729421428 cites W2951844306 @default.
- W1729421428 cites W3209132122 @default.
- W1729421428 cites W2143137552 @default.
- W1729421428 cites W3142789957 @default.
- W1729421428 doi "https://doi.org/10.7907/p842-7b49." @default.
- W1729421428 hasPublicationYear "2008" @default.
- W1729421428 type Work @default.
- W1729421428 sameAs 1729421428 @default.
- W1729421428 citedByCount "1" @default.
- W1729421428 countsByYear W17294214282013 @default.
- W1729421428 crossrefType "dissertation" @default.
- W1729421428 hasAuthorship W1729421428A5034055695 @default.
- W1729421428 hasAuthorship W1729421428A5087585086 @default.
- W1729421428 hasConcept C111919701 @default.
- W1729421428 hasConcept C120314980 @default.
- W1729421428 hasConcept C121332964 @default.
- W1729421428 hasConcept C127413603 @default.
- W1729421428 hasConcept C157764524 @default.
- W1729421428 hasConcept C163258240 @default.
- W1729421428 hasConcept C165696696 @default.
- W1729421428 hasConcept C171250308 @default.
- W1729421428 hasConcept C192562407 @default.
- W1729421428 hasConcept C200601418 @default.
- W1729421428 hasConcept C2779960059 @default.
- W1729421428 hasConcept C38652104 @default.
- W1729421428 hasConcept C41008148 @default.