Matches in SemOpenAlex for { <https://semopenalex.org/work/W1732650778> ?p ?o ?g. }
- W1732650778 abstract "The $k$-NN graph has played a central role in increasingly popular data-driven techniques for various learning and vision tasks; yet, finding an efficient and effective way to construct $k$-NN graphs remains a challenge, especially for large-scale high-dimensional data. In this paper, we propose a new approach to construct approximate $k$-NN graphs with emphasis in: efficiency and accuracy. We hierarchically and randomly divide the data points into subsets and build an exact neighborhood graph over each subset, achieving a base approximate neighborhood graph; we then repeat this process for several times to generate multiple neighborhood graphs, which are combined to yield a more accurate approximate neighborhood graph. Furthermore, we propose a neighborhood propagation scheme to further enhance the accuracy. We show both theoretical and empirical accuracy and efficiency of our approach to $k$-NN graph construction and demonstrate significant speed-up in dealing with large scale visual data." @default.
- W1732650778 created "2016-06-24" @default.
- W1732650778 creator A5001760915 @default.
- W1732650778 creator A5002454695 @default.
- W1732650778 creator A5037677450 @default.
- W1732650778 creator A5040699855 @default.
- W1732650778 creator A5075880303 @default.
- W1732650778 creator A5079340373 @default.
- W1732650778 date "2013-07-30" @default.
- W1732650778 modified "2023-09-25" @default.
- W1732650778 title "Scalable $k$-NN graph construction" @default.
- W1732650778 cites W1500351990 @default.
- W1732650778 cites W1528927805 @default.
- W1732650778 cites W1542351876 @default.
- W1732650778 cites W1593534758 @default.
- W1732650778 cites W1782590233 @default.
- W1732650778 cites W1976455030 @default.
- W1732650778 cites W1978112828 @default.
- W1732650778 cites W1993216012 @default.
- W1732650778 cites W2001141328 @default.
- W1732650778 cites W2023883913 @default.
- W1732650778 cites W2024047694 @default.
- W1732650778 cites W2024668293 @default.
- W1732650778 cites W2053186076 @default.
- W1732650778 cites W2071866949 @default.
- W1732650778 cites W2076188996 @default.
- W1732650778 cites W2082042699 @default.
- W1732650778 cites W2097308346 @default.
- W1732650778 cites W2099253838 @default.
- W1732650778 cites W2108598243 @default.
- W1732650778 cites W2112979232 @default.
- W1732650778 cites W2115407997 @default.
- W1732650778 cites W2117686912 @default.
- W1732650778 cites W2118123209 @default.
- W1732650778 cites W2128017662 @default.
- W1732650778 cites W2128703518 @default.
- W1732650778 cites W2130502756 @default.
- W1732650778 cites W2131791003 @default.
- W1732650778 cites W2133442079 @default.
- W1732650778 cites W2141362318 @default.
- W1732650778 cites W2145607950 @default.
- W1732650778 cites W2150307973 @default.
- W1732650778 cites W2151625907 @default.
- W1732650778 cites W2153168552 @default.
- W1732650778 cites W2155162820 @default.
- W1732650778 cites W2155904486 @default.
- W1732650778 cites W2156365280 @default.
- W1732650778 cites W2161008043 @default.
- W1732650778 cites W2161854574 @default.
- W1732650778 cites W2162006472 @default.
- W1732650778 cites W2165232124 @default.
- W1732650778 cites W2165558283 @default.
- W1732650778 cites W2171790913 @default.
- W1732650778 cites W2296179043 @default.
- W1732650778 cites W2537826750 @default.
- W1732650778 cites W2911964244 @default.
- W1732650778 doi "https://doi.org/10.48550/arxiv.1307.7852" @default.
- W1732650778 hasPublicationYear "2013" @default.
- W1732650778 type Work @default.
- W1732650778 sameAs 1732650778 @default.
- W1732650778 citedByCount "1" @default.
- W1732650778 countsByYear W17326507782013 @default.
- W1732650778 crossrefType "posted-content" @default.
- W1732650778 hasAuthorship W1732650778A5001760915 @default.
- W1732650778 hasAuthorship W1732650778A5002454695 @default.
- W1732650778 hasAuthorship W1732650778A5037677450 @default.
- W1732650778 hasAuthorship W1732650778A5040699855 @default.
- W1732650778 hasAuthorship W1732650778A5075880303 @default.
- W1732650778 hasAuthorship W1732650778A5079340373 @default.
- W1732650778 hasBestOaLocation W17326507781 @default.
- W1732650778 hasConcept C11413529 @default.
- W1732650778 hasConcept C132525143 @default.
- W1732650778 hasConcept C199360897 @default.
- W1732650778 hasConcept C2780801425 @default.
- W1732650778 hasConcept C41008148 @default.
- W1732650778 hasConcept C48044578 @default.
- W1732650778 hasConcept C77088390 @default.
- W1732650778 hasConcept C80444323 @default.
- W1732650778 hasConceptScore W1732650778C11413529 @default.
- W1732650778 hasConceptScore W1732650778C132525143 @default.
- W1732650778 hasConceptScore W1732650778C199360897 @default.
- W1732650778 hasConceptScore W1732650778C2780801425 @default.
- W1732650778 hasConceptScore W1732650778C41008148 @default.
- W1732650778 hasConceptScore W1732650778C48044578 @default.
- W1732650778 hasConceptScore W1732650778C77088390 @default.
- W1732650778 hasConceptScore W1732650778C80444323 @default.
- W1732650778 hasLocation W17326507781 @default.
- W1732650778 hasLocation W17326507782 @default.
- W1732650778 hasOpenAccess W1732650778 @default.
- W1732650778 hasPrimaryLocation W17326507781 @default.
- W1732650778 hasRelatedWork W1666765134 @default.
- W1732650778 hasRelatedWork W2116176106 @default.
- W1732650778 hasRelatedWork W2915336237 @default.
- W1732650778 hasRelatedWork W2964394077 @default.
- W1732650778 hasRelatedWork W2982368516 @default.
- W1732650778 hasRelatedWork W3039500550 @default.
- W1732650778 hasRelatedWork W3094989083 @default.
- W1732650778 hasRelatedWork W4288563611 @default.
- W1732650778 hasRelatedWork W4301846872 @default.
- W1732650778 hasRelatedWork W4309581948 @default.