Matches in SemOpenAlex for { <https://semopenalex.org/work/W1734089161> ?p ?o ?g. }
- W1734089161 endingPage "788" @default.
- W1734089161 startingPage "766" @default.
- W1734089161 abstract "A 3D time dependent numerical study was performed to study the gas–liquid–solid three-phase flow dynamics in bubble columns by employing the Eulerian–Eulerian–Eulerian three-fluid approach. The three-phase bubble column of Gandhi et al. (Powder Technol. 1999, 103 (2), 80–94), Rampure et al. (Can. J. Chem. Eng. 2003, 81 (3–4), 692–706) and our previous study (Powder Technol. 2014, 260, 27–35) were studied. A mathematical model of a gas–liquid–solid three-phase flow was built. The effect of numerical schemes (wall boundary conditions, momentum discretization schemes and time steps) was discussed. CFD simulations were performed to study the sensitivity of the interphase drag models (different liquid–solid, gas–solid and gas–liquid drag models), and the predictions were compared with the experiments. The results showed that no-slip conditions for the wall boundary conditions, 0.001 s for the calculation time step and second-order Upwind for momentum discretization, had better prediction results. The appropriate interphase drag forces to describe the three phase flow found in this study were the Zhang–Vanderheyden model, which was used as a gas–liquid drag model, Schiller–Naumann model, used as a liquid–solid drag model, and gas–solid drag force, which was not considered. The appropriate numerical schemes and interphase drag models were utilized to simulate the hydrodynamic parameters (time-averaged gas holdup, solid holdup, liquid axial velocity) in a gas–liquid–solid bubble column. The effects of superficial gas velocity, particle volume fraction, particle size and density were analysed and discussed. Four flow regimes of a gas–liquid–solid bubble column were simulated; the CFD results were compared with the experimental flow structures, and it was found that the bubble coalescence regime was better depicted. Superficial gas velocity had a large effect on the gas holdup of the bed, and the effect of solid volume fraction (Vs = 0.03–0.30) and particle size (dp = 75 μm–270 μm) on the distributions of time-averaged solid holdup and liquid axial velocity was greater than that of particle density (ρp = 2500 kg/m3–4800 kg/m3). When particle size dp ≥ 150 μm and solid volume fraction Vs ≥ 0.09, the hydrodynamic parameters had a strong dependency on dp and Vs. The larger the values of the Vs, dp and ρp were, the larger the axial solid concentration gradient was." @default.
- W1734089161 created "2016-06-24" @default.
- W1734089161 creator A5021150663 @default.
- W1734089161 creator A5072825980 @default.
- W1734089161 date "2015-12-01" @default.
- W1734089161 modified "2023-10-15" @default.
- W1734089161 title "CFD simulation of hydrodynamics of gas–liquid–solid three-phase bubble column" @default.
- W1734089161 cites W1499023270 @default.
- W1734089161 cites W1963803567 @default.
- W1734089161 cites W1974344702 @default.
- W1734089161 cites W1984219326 @default.
- W1734089161 cites W1992593208 @default.
- W1734089161 cites W1993785105 @default.
- W1734089161 cites W1995582748 @default.
- W1734089161 cites W1997460027 @default.
- W1734089161 cites W2005759189 @default.
- W1734089161 cites W2009596006 @default.
- W1734089161 cites W2023332540 @default.
- W1734089161 cites W2024895732 @default.
- W1734089161 cites W2042992081 @default.
- W1734089161 cites W2052661768 @default.
- W1734089161 cites W2055243081 @default.
- W1734089161 cites W2055954006 @default.
- W1734089161 cites W2058474498 @default.
- W1734089161 cites W2062226699 @default.
- W1734089161 cites W2063321377 @default.
- W1734089161 cites W2067866711 @default.
- W1734089161 cites W2072490631 @default.
- W1734089161 cites W2084719855 @default.
- W1734089161 cites W2085307186 @default.
- W1734089161 cites W2085583206 @default.
- W1734089161 cites W2089512289 @default.
- W1734089161 cites W2093357151 @default.
- W1734089161 cites W2153492345 @default.
- W1734089161 cites W2157596457 @default.
- W1734089161 cites W2158953298 @default.
- W1734089161 cites W613095859 @default.
- W1734089161 doi "https://doi.org/10.1016/j.powtec.2015.09.028" @default.
- W1734089161 hasPublicationYear "2015" @default.
- W1734089161 type Work @default.
- W1734089161 sameAs 1734089161 @default.
- W1734089161 citedByCount "45" @default.
- W1734089161 countsByYear W17340891612016 @default.
- W1734089161 countsByYear W17340891612017 @default.
- W1734089161 countsByYear W17340891612018 @default.
- W1734089161 countsByYear W17340891612019 @default.
- W1734089161 countsByYear W17340891612020 @default.
- W1734089161 countsByYear W17340891612021 @default.
- W1734089161 countsByYear W17340891612022 @default.
- W1734089161 countsByYear W17340891612023 @default.
- W1734089161 crossrefType "journal-article" @default.
- W1734089161 hasAuthorship W1734089161A5021150663 @default.
- W1734089161 hasAuthorship W1734089161A5072825980 @default.
- W1734089161 hasConcept C10138342 @default.
- W1734089161 hasConcept C121332964 @default.
- W1734089161 hasConcept C134306372 @default.
- W1734089161 hasConcept C157915830 @default.
- W1734089161 hasConcept C162324750 @default.
- W1734089161 hasConcept C1633027 @default.
- W1734089161 hasConcept C192562407 @default.
- W1734089161 hasConcept C2779379648 @default.
- W1734089161 hasConcept C33923547 @default.
- W1734089161 hasConcept C38349280 @default.
- W1734089161 hasConcept C57879066 @default.
- W1734089161 hasConcept C60718061 @default.
- W1734089161 hasConcept C72117827 @default.
- W1734089161 hasConcept C72921944 @default.
- W1734089161 hasConcept C73000952 @default.
- W1734089161 hasConcept C97355855 @default.
- W1734089161 hasConceptScore W1734089161C10138342 @default.
- W1734089161 hasConceptScore W1734089161C121332964 @default.
- W1734089161 hasConceptScore W1734089161C134306372 @default.
- W1734089161 hasConceptScore W1734089161C157915830 @default.
- W1734089161 hasConceptScore W1734089161C162324750 @default.
- W1734089161 hasConceptScore W1734089161C1633027 @default.
- W1734089161 hasConceptScore W1734089161C192562407 @default.
- W1734089161 hasConceptScore W1734089161C2779379648 @default.
- W1734089161 hasConceptScore W1734089161C33923547 @default.
- W1734089161 hasConceptScore W1734089161C38349280 @default.
- W1734089161 hasConceptScore W1734089161C57879066 @default.
- W1734089161 hasConceptScore W1734089161C60718061 @default.
- W1734089161 hasConceptScore W1734089161C72117827 @default.
- W1734089161 hasConceptScore W1734089161C72921944 @default.
- W1734089161 hasConceptScore W1734089161C73000952 @default.
- W1734089161 hasConceptScore W1734089161C97355855 @default.
- W1734089161 hasFunder F4320321001 @default.
- W1734089161 hasLocation W17340891611 @default.
- W1734089161 hasOpenAccess W1734089161 @default.
- W1734089161 hasPrimaryLocation W17340891611 @default.
- W1734089161 hasRelatedWork W177020584 @default.
- W1734089161 hasRelatedWork W196974285 @default.
- W1734089161 hasRelatedWork W2001125916 @default.
- W1734089161 hasRelatedWork W2007456519 @default.
- W1734089161 hasRelatedWork W2064169792 @default.
- W1734089161 hasRelatedWork W2073282075 @default.
- W1734089161 hasRelatedWork W2344439167 @default.
- W1734089161 hasRelatedWork W2346172373 @default.
- W1734089161 hasRelatedWork W2756211003 @default.