Matches in SemOpenAlex for { <https://semopenalex.org/work/W173424> ?p ?o ?g. }
- W173424 abstract "Estimation of distribution algorithms (EDAs) is a relatively new trend of stochastic optimizers which have received a lot of attention during last decade. In each generation, EDAs build probabilistic models of promising solutions of an optimization problem to guide the search process. New sets of solutions are obtained by sampling the corresponding probability distributions. Using this approach, EDAs are able to provide the user a set of models that reveals the dependencies between variables of the optimization problems while solving them. In order to solve a complex problem, it is necessary to use a probabilistic model which is able to capture the dependencies. Bayesian networks are usually used for modeling multiple dependencies between variables. Learning Bayesian networks, especially for large problems with high degree of dependencies among their variables is highly computationally expensive which makes it the bottleneck of EDAs. Therefore introducing efficient Bayesian learning algorithms in EDAs seems necessary in order to use them for large problems. In this dissertation, after comparing several Bayesian network learning algorithms, we propose an algorithm, called CMSS-BOA, which uses a recently introduced heuristic called max-min parent children (MMPC) in order to constrain the model search space. This algorithm does not consider a fixed and small upper bound on the order of interaction between variables and is able solve problems with large numbers of variables efficiently. We compare the efficiency of CMSS-BOA with the standard Bayesian network based EDA for solving several benchmark problems and finally we use it to build a predictor for predicting the glycation sites in mammalian proteins." @default.
- W173424 created "2016-06-24" @default.
- W173424 creator A5056539616 @default.
- W173424 creator A5075050950 @default.
- W173424 date "2013-01-01" @default.
- W173424 modified "2023-09-28" @default.
- W173424 title "Improving the efficiency of bayesian network based edas and their application in bioinformatics" @default.
- W173424 cites W1479911746 @default.
- W173424 cites W1480096517 @default.
- W173424 cites W1486301171 @default.
- W173424 cites W1501163499 @default.
- W173424 cites W1505477995 @default.
- W173424 cites W1514928772 @default.
- W173424 cites W1530964327 @default.
- W173424 cites W1532777422 @default.
- W173424 cites W1534948419 @default.
- W173424 cites W1536712125 @default.
- W173424 cites W1538896368 @default.
- W173424 cites W1544849317 @default.
- W173424 cites W1545005363 @default.
- W173424 cites W1548369215 @default.
- W173424 cites W1556153137 @default.
- W173424 cites W1559767587 @default.
- W173424 cites W1560047216 @default.
- W173424 cites W1566243137 @default.
- W173424 cites W1570713908 @default.
- W173424 cites W1577536977 @default.
- W173424 cites W1607768087 @default.
- W173424 cites W165893037 @default.
- W173424 cites W169645471 @default.
- W173424 cites W1769824028 @default.
- W173424 cites W1789238264 @default.
- W173424 cites W1801737117 @default.
- W173424 cites W1817561967 @default.
- W173424 cites W1965555277 @default.
- W173424 cites W1970424517 @default.
- W173424 cites W1975975525 @default.
- W173424 cites W1983858940 @default.
- W173424 cites W1986750708 @default.
- W173424 cites W1988814833 @default.
- W173424 cites W1990351156 @default.
- W173424 cites W2007557654 @default.
- W173424 cites W2008906462 @default.
- W173424 cites W2011039300 @default.
- W173424 cites W2022157941 @default.
- W173424 cites W2034029572 @default.
- W173424 cites W2034398583 @default.
- W173424 cites W2034495965 @default.
- W173424 cites W2049058758 @default.
- W173424 cites W2053913299 @default.
- W173424 cites W2055849881 @default.
- W173424 cites W2058227600 @default.
- W173424 cites W2077199592 @default.
- W173424 cites W2086392335 @default.
- W173424 cites W2100861855 @default.
- W173424 cites W2103138948 @default.
- W173424 cites W2105860012 @default.
- W173424 cites W2109363337 @default.
- W173424 cites W2110575115 @default.
- W173424 cites W2113416897 @default.
- W173424 cites W2119387367 @default.
- W173424 cites W2119479037 @default.
- W173424 cites W2120529703 @default.
- W173424 cites W2126105956 @default.
- W173424 cites W2129208356 @default.
- W173424 cites W2133027881 @default.
- W173424 cites W2139015486 @default.
- W173424 cites W2144907232 @default.
- W173424 cites W2149337551 @default.
- W173424 cites W2153456067 @default.
- W173424 cites W2155461849 @default.
- W173424 cites W2156896344 @default.
- W173424 cites W2159456109 @default.
- W173424 cites W2159617953 @default.
- W173424 cites W2160016247 @default.
- W173424 cites W2160944125 @default.
- W173424 cites W2161632986 @default.
- W173424 cites W2165839500 @default.
- W173424 cites W2166603077 @default.
- W173424 cites W2166843422 @default.
- W173424 cites W2169152096 @default.
- W173424 cites W2171724285 @default.
- W173424 cites W2330192890 @default.
- W173424 cites W2330836443 @default.
- W173424 cites W2339500526 @default.
- W173424 cites W2396245719 @default.
- W173424 cites W2414365832 @default.
- W173424 cites W2488789499 @default.
- W173424 cites W265571506 @default.
- W173424 cites W267461464 @default.
- W173424 cites W3154803405 @default.
- W173424 hasPublicationYear "2013" @default.
- W173424 type Work @default.
- W173424 sameAs 173424 @default.
- W173424 citedByCount "0" @default.
- W173424 crossrefType "journal-article" @default.
- W173424 hasAuthorship W173424A5056539616 @default.
- W173424 hasAuthorship W173424A5075050950 @default.
- W173424 hasConcept C107673813 @default.
- W173424 hasConcept C119857082 @default.