Matches in SemOpenAlex for { <https://semopenalex.org/work/W173653721> ?p ?o ?g. }
- W173653721 endingPage "350" @default.
- W173653721 startingPage "317" @default.
- W173653721 abstract "Two major reformulation methods, the nonsmooth method and the smoothing method, for solving nonlinear complementarity problems and variational inequality problems, have been rapidly developed in recent years. Superlinear convergence of these methods is linked with semismoothness, which is based on generalized Jacobians of locally Lipschitz functions. However, the definition of generalized Jacobians relies on the Rademacher theorem, and the exact calculus rules do not hold for generalized Jacobians. These pose some restrictions and difficulties for these methods. In this paper, we define a semiderivative function G for a continuous function F and show that this concept is indeed an extension of the concept of the derivative function. The semiderivative function G is single-valued and satisfies exact calculus rules. Hence it is relatively easy to calculate. Several common nonsmooth equation reformulations of nonlinear complementarity problems and variational inequality problems can be regarded as componentwise compositions of some smooth functions and some simple generalized semismooth functions, such as the plus function, the Fischer-Burmeister function and the median function. The derivatives of several well-known smoothing functions, such as the Chen-Harker-Kanzow-Smale function, the Chen-Mangasarian function and the Gabrial-Moré function, converge to semiderivative functions of the corresponding nonsmooth reformulation func-tions as the smoothing parameter goes to zero. Based upon this new concept, superlinear convergence conditions for both the nonsmooth method and the smoothing method are established.Keywordsnonsmooth reformulationgeneralized Newton methodssuperlin-ear convergencegeneralized semismooth functions." @default.
- W173653721 created "2016-06-24" @default.
- W173653721 creator A5011886900 @default.
- W173653721 creator A5037628561 @default.
- W173653721 creator A5049974446 @default.
- W173653721 date "2000-01-01" @default.
- W173653721 modified "2023-09-27" @default.
- W173653721 title "Semiderivative Functions and Reformulation Methods for Solving Complementarity and Variational Inequality Problems" @default.
- W173653721 cites W104144503 @default.
- W173653721 cites W1881816275 @default.
- W173653721 cites W1966095601 @default.
- W173653721 cites W1967759264 @default.
- W173653721 cites W1977904123 @default.
- W173653721 cites W1978625593 @default.
- W173653721 cites W1981947863 @default.
- W173653721 cites W1986363259 @default.
- W173653721 cites W1989525387 @default.
- W173653721 cites W1990823216 @default.
- W173653721 cites W1992688650 @default.
- W173653721 cites W2003540223 @default.
- W173653721 cites W2005148680 @default.
- W173653721 cites W2009885647 @default.
- W173653721 cites W2036930530 @default.
- W173653721 cites W2040752458 @default.
- W173653721 cites W2050864977 @default.
- W173653721 cites W2051269616 @default.
- W173653721 cites W2065691568 @default.
- W173653721 cites W2079340989 @default.
- W173653721 cites W2087973298 @default.
- W173653721 cites W2090689930 @default.
- W173653721 cites W2113734366 @default.
- W173653721 cites W2123534004 @default.
- W173653721 cites W84287112 @default.
- W173653721 cites W92138443 @default.
- W173653721 doi "https://doi.org/10.1007/978-1-4757-3226-9_17" @default.
- W173653721 hasPublicationYear "2000" @default.
- W173653721 type Work @default.
- W173653721 sameAs 173653721 @default.
- W173653721 citedByCount "2" @default.
- W173653721 crossrefType "book-chapter" @default.
- W173653721 hasAuthorship W173653721A5011886900 @default.
- W173653721 hasAuthorship W173653721A5037628561 @default.
- W173653721 hasAuthorship W173653721A5049974446 @default.
- W173653721 hasConcept C105795698 @default.
- W173653721 hasConcept C121332964 @default.
- W173653721 hasConcept C126255220 @default.
- W173653721 hasConcept C14036430 @default.
- W173653721 hasConcept C158622935 @default.
- W173653721 hasConcept C161999928 @default.
- W173653721 hasConcept C199343813 @default.
- W173653721 hasConcept C202444582 @default.
- W173653721 hasConcept C22324862 @default.
- W173653721 hasConcept C2777686260 @default.
- W173653721 hasConcept C2778646529 @default.
- W173653721 hasConcept C28826006 @default.
- W173653721 hasConcept C33923547 @default.
- W173653721 hasConcept C3770464 @default.
- W173653721 hasConcept C62520636 @default.
- W173653721 hasConcept C71924100 @default.
- W173653721 hasConcept C77196050 @default.
- W173653721 hasConcept C78458016 @default.
- W173653721 hasConcept C85404239 @default.
- W173653721 hasConcept C86803240 @default.
- W173653721 hasConceptScore W173653721C105795698 @default.
- W173653721 hasConceptScore W173653721C121332964 @default.
- W173653721 hasConceptScore W173653721C126255220 @default.
- W173653721 hasConceptScore W173653721C14036430 @default.
- W173653721 hasConceptScore W173653721C158622935 @default.
- W173653721 hasConceptScore W173653721C161999928 @default.
- W173653721 hasConceptScore W173653721C199343813 @default.
- W173653721 hasConceptScore W173653721C202444582 @default.
- W173653721 hasConceptScore W173653721C22324862 @default.
- W173653721 hasConceptScore W173653721C2777686260 @default.
- W173653721 hasConceptScore W173653721C2778646529 @default.
- W173653721 hasConceptScore W173653721C28826006 @default.
- W173653721 hasConceptScore W173653721C33923547 @default.
- W173653721 hasConceptScore W173653721C3770464 @default.
- W173653721 hasConceptScore W173653721C62520636 @default.
- W173653721 hasConceptScore W173653721C71924100 @default.
- W173653721 hasConceptScore W173653721C77196050 @default.
- W173653721 hasConceptScore W173653721C78458016 @default.
- W173653721 hasConceptScore W173653721C85404239 @default.
- W173653721 hasConceptScore W173653721C86803240 @default.
- W173653721 hasLocation W1736537211 @default.
- W173653721 hasOpenAccess W173653721 @default.
- W173653721 hasPrimaryLocation W1736537211 @default.
- W173653721 hasRelatedWork W1524039486 @default.
- W173653721 hasRelatedWork W1551374524 @default.
- W173653721 hasRelatedWork W1560867458 @default.
- W173653721 hasRelatedWork W168544403 @default.
- W173653721 hasRelatedWork W2019920356 @default.
- W173653721 hasRelatedWork W2057074226 @default.
- W173653721 hasRelatedWork W2057372549 @default.
- W173653721 hasRelatedWork W2060771693 @default.
- W173653721 hasRelatedWork W2079667419 @default.
- W173653721 hasRelatedWork W2093242633 @default.
- W173653721 hasRelatedWork W2095191131 @default.
- W173653721 hasRelatedWork W2101357972 @default.