Matches in SemOpenAlex for { <https://semopenalex.org/work/W174056365> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W174056365 endingPage "107" @default.
- W174056365 startingPage "95" @default.
- W174056365 abstract "Most natural language processing tasks deal with large amounts of data, which takes a lot of time to process. For better results, a larger dataset and a good set of features are very helpful. But larger volumes of text and high dimensionality of features will mean slower performance. Thus, natural language processing and distributed computing are a good match. In the PAN 2013 competition, the test runtimes for author profiling range from several minutes to several days. Most author profiling systems available now are either inaccurate or slow or both. Our system, written entirely in MapReduce, employs nearly 3 million features and still manages to finish the task in a fraction of time than state-of-the-art systems and with better accuracy. Our system demonstrates that when we deal with a huge amount of data and/or a large number of features, using distributed systems makes perfect sense." @default.
- W174056365 created "2016-06-24" @default.
- W174056365 creator A5032620055 @default.
- W174056365 creator A5047351656 @default.
- W174056365 creator A5076460405 @default.
- W174056365 creator A5079583503 @default.
- W174056365 date "2014-01-01" @default.
- W174056365 modified "2023-10-02" @default.
- W174056365 title "A Straightforward Author Profiling Approach in MapReduce" @default.
- W174056365 cites W2119595472 @default.
- W174056365 doi "https://doi.org/10.1007/978-3-319-12027-0_8" @default.
- W174056365 hasPublicationYear "2014" @default.
- W174056365 type Work @default.
- W174056365 sameAs 174056365 @default.
- W174056365 citedByCount "10" @default.
- W174056365 countsByYear W1740563652015 @default.
- W174056365 countsByYear W1740563652016 @default.
- W174056365 countsByYear W1740563652017 @default.
- W174056365 countsByYear W1740563652018 @default.
- W174056365 countsByYear W1740563652019 @default.
- W174056365 countsByYear W1740563652020 @default.
- W174056365 crossrefType "book-chapter" @default.
- W174056365 hasAuthorship W174056365A5032620055 @default.
- W174056365 hasAuthorship W174056365A5047351656 @default.
- W174056365 hasAuthorship W174056365A5076460405 @default.
- W174056365 hasAuthorship W174056365A5079583503 @default.
- W174056365 hasConcept C111030470 @default.
- W174056365 hasConcept C124101348 @default.
- W174056365 hasConcept C154945302 @default.
- W174056365 hasConcept C187191949 @default.
- W174056365 hasConcept C199360897 @default.
- W174056365 hasConcept C41008148 @default.
- W174056365 hasConceptScore W174056365C111030470 @default.
- W174056365 hasConceptScore W174056365C124101348 @default.
- W174056365 hasConceptScore W174056365C154945302 @default.
- W174056365 hasConceptScore W174056365C187191949 @default.
- W174056365 hasConceptScore W174056365C199360897 @default.
- W174056365 hasConceptScore W174056365C41008148 @default.
- W174056365 hasLocation W1740563651 @default.
- W174056365 hasOpenAccess W174056365 @default.
- W174056365 hasPrimaryLocation W1740563651 @default.
- W174056365 hasRelatedWork W1496697599 @default.
- W174056365 hasRelatedWork W1602801198 @default.
- W174056365 hasRelatedWork W2016929877 @default.
- W174056365 hasRelatedWork W2145546708 @default.
- W174056365 hasRelatedWork W2348361596 @default.
- W174056365 hasRelatedWork W2352497206 @default.
- W174056365 hasRelatedWork W2503961669 @default.
- W174056365 hasRelatedWork W3003264772 @default.
- W174056365 hasRelatedWork W842142381 @default.
- W174056365 hasRelatedWork W2521117258 @default.
- W174056365 isParatext "false" @default.
- W174056365 isRetracted "false" @default.
- W174056365 magId "174056365" @default.
- W174056365 workType "book-chapter" @default.