Matches in SemOpenAlex for { <https://semopenalex.org/work/W17408180> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W17408180 abstract "Increasingly, modern computing problems, including many scientific and business applications, require huge amounts of data to be examined, modified, and stored. Parallel computers can be used to decrease the time needed to operate on such large data sets, by allowing computations to be performed on many pieces of data at once. For example, on the DECmpp machine used in our research, there are 2048 processors in the parallel processor array. The DECmpp can read data into each of these processors, perform a computation in parallel on all of it, and write the data out again, theoretically decreasing the execution time by a factor of 2048 over the time required by one of its processors. Often, the computations that occur after the data is in the processors involve rearranging, or permuting, the data within the array of parallel processors. Information moves between processors by means of a network connecting them. Communication through the network can be very expensive, especially if there are many collisions--simultaneous contentions for the same network resource--between items of data moving from one processor to another. When a program performs hundreds or even thousands of these permutations during its execution, a bottleneck can occur, impeding the overall performance of the program. Effective algorithms that decrease the time required to permute the data within a parallel computer can yield a significant speed increase in running programs with large data sets. Cormen has designed algorithms to improve performance when the data movement is defined by certain classes of permutations. This thesis will examine the performance of one of these classes, the bit-matrix-multiply/complement (BMMC) permutation, when implemented on the DECmpp. Although Cormen''s algorithm was designed for parallel disk systems, this thesis adapts it to permutations of data residing in the memory of the parallel processors. The DECmpp network follows the model of an Extended Delta Network (EDN). One characteristic of an EDN is that it has a set of input and output ports to the network, each of which can carry only one item of data at a time. If more than one item needs to travel over a given port, a collision occurs. The data must access the port serially, which slows down the entire operation. Cormen''s algorithm reduces these collisions by computing a schedule for sending the data over the network. For small data sets, it is not worthwhile to perform the extra operations to generate such a schedule, because the overhead associated with computing the schedule outweighs the time gained by preventing collisions at the network ports. As the size of the data set increases, eliminating collisions becomes more and more valuable. On the DECmpp, when the data permutation involves more than 128 elements per processor, our algorithm beats the more naive and obvious method for permuting in the parallel processor array." @default.
- W17408180 created "2016-06-24" @default.
- W17408180 creator A5024676294 @default.
- W17408180 date "1994-01-01" @default.
- W17408180 modified "2023-09-24" @default.
- W17408180 title "BMMC Permutations on a DECmpp 12000/sx 2000" @default.
- W17408180 hasPublicationYear "1994" @default.
- W17408180 type Work @default.
- W17408180 sameAs 17408180 @default.
- W17408180 citedByCount "2" @default.
- W17408180 crossrefType "journal-article" @default.
- W17408180 hasAuthorship W17408180A5024676294 @default.
- W17408180 hasConcept C111919701 @default.
- W17408180 hasConcept C11413529 @default.
- W17408180 hasConcept C120373497 @default.
- W17408180 hasConcept C126909462 @default.
- W17408180 hasConcept C149635348 @default.
- W17408180 hasConcept C173608175 @default.
- W17408180 hasConcept C199360897 @default.
- W17408180 hasConcept C2780513914 @default.
- W17408180 hasConcept C2781039887 @default.
- W17408180 hasConcept C41008148 @default.
- W17408180 hasConcept C45374587 @default.
- W17408180 hasConcept C75684735 @default.
- W17408180 hasConceptScore W17408180C111919701 @default.
- W17408180 hasConceptScore W17408180C11413529 @default.
- W17408180 hasConceptScore W17408180C120373497 @default.
- W17408180 hasConceptScore W17408180C126909462 @default.
- W17408180 hasConceptScore W17408180C149635348 @default.
- W17408180 hasConceptScore W17408180C173608175 @default.
- W17408180 hasConceptScore W17408180C199360897 @default.
- W17408180 hasConceptScore W17408180C2780513914 @default.
- W17408180 hasConceptScore W17408180C2781039887 @default.
- W17408180 hasConceptScore W17408180C41008148 @default.
- W17408180 hasConceptScore W17408180C45374587 @default.
- W17408180 hasConceptScore W17408180C75684735 @default.
- W17408180 hasLocation W174081801 @default.
- W17408180 hasOpenAccess W17408180 @default.
- W17408180 hasPrimaryLocation W174081801 @default.
- W17408180 hasRelatedWork W1498628342 @default.
- W17408180 hasRelatedWork W2010545679 @default.
- W17408180 hasRelatedWork W2121393783 @default.
- W17408180 hasRelatedWork W2144430294 @default.
- W17408180 hasRelatedWork W2159507242 @default.
- W17408180 hasRelatedWork W2206404388 @default.
- W17408180 hasRelatedWork W2249912464 @default.
- W17408180 hasRelatedWork W2274304637 @default.
- W17408180 hasRelatedWork W2396417210 @default.
- W17408180 hasRelatedWork W2623002639 @default.
- W17408180 hasRelatedWork W2887280043 @default.
- W17408180 hasRelatedWork W2988013928 @default.
- W17408180 hasRelatedWork W3153462900 @default.
- W17408180 hasRelatedWork W45285627 @default.
- W17408180 hasRelatedWork W67761735 @default.
- W17408180 hasRelatedWork W834712556 @default.
- W17408180 hasRelatedWork W1571969677 @default.
- W17408180 hasRelatedWork W2181848484 @default.
- W17408180 hasRelatedWork W2927196148 @default.
- W17408180 hasRelatedWork W777954702 @default.
- W17408180 isParatext "false" @default.
- W17408180 isRetracted "false" @default.
- W17408180 magId "17408180" @default.
- W17408180 workType "article" @default.