Matches in SemOpenAlex for { <https://semopenalex.org/work/W174472240> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W174472240 endingPage "65" @default.
- W174472240 startingPage "54" @default.
- W174472240 abstract "Computational linguistics has a long tradition of lexicalized grammars, in which each grammatical rule is specialized for some individual word. The earliest lexicalized rules were word-specific subcategorization frames. It is now common to find fully lexicalized versions of many grammatical formalisms, such as context-free and tree-adjoining grammars [Schabes et al. 1988]. Other formalisms, such as dependency grammar [Mel’cuk 1988] and head-driven phrase-structure grammar [Pollard & Sag 1994], are explicitly lexical from the start. Lexicalized grammars have two well-known advantages. Where syntactic acceptability is sensitive to the quirks of individual words, lexicalized rules are necessary for linguistic description. Lexicalized rules are also computationally cheap for parsing written text: a parser may ignore those rules that do not mention any input words. More recently, a third advantage of lexicalized grammars has emerged. Even when syntactic acceptability is not sensitive to the particular words chosen, syntactic distribution may be [Resnik 1993]. Certain words may be able but highly unlikely to modify certain other words. Such facts can be captured by a probabilistic lexicalized grammar, where they may be used to resolve ambiguity in favor of the most probable analysis, and also to speed parsing by avoiding (“pruning”) unlikely search paths. Accuracy and efficiency can therefore both benefit. Recent work along these lines includes [Charniak 1995, Collins 1996, Eisner 1996b, Collins 1997], who reported state-of-the-art parsing accuracy. Related models are proposed without evaluation in [Lafferty et al. 1992, Alshawi 1996]. This recent flurry of probabilistic lexicalized parsers has focused on what one might call bilexical grammars, in which each grammatical rule is specialized for not one but two individual words. The central insight is that specific words subcategorize to some degree for other specific words: tax is a good object for the verb raise. Accordingly, these models estimate, for example, the probability that (a phrase headed by) word y modifies word x, for any two words x, y in the vocabulary V . At first blush, probabilistic bilexical grammars appear to carry a substantial computational penalty. Chart parsers derived directly from CKY or Earley’s algorithm take time O(n min(n, |V |)), which amounts to O(n) in practice. Such algorithms implicitly or explicitly regard the grammar as a context-free grammar in which a noun phrase headed by tiger bears the special nonterminal NPtiger. Such ≈ O(n ) algorithms are explicitly used by [Alshawi 1996, Collins 1996], and almost certainly by [Charniak 1995] as well. The present paper formalizes an inclusive notion of bilexical grammars, and shows that they can be parsed in time only O(ngtm) ≈ O(n), where g, t, and m are bounded by the grammar and are typically small. (g is the maximum number of senses per input word, t measures the degree of lexical interdependence that the grammar allows among the several children of a word, and m bounds the number of modifier relations that the parser need distinguish for a given pair of words.) The new algorithm also reduces space requirements to O(ngt) ≈ O(n), from the ≈ O(n) required by CKY-style approaches to bilexical grammar. The parsing algorithm finds the highest-scoring analysis or analyses generated by the grammar, under a probabilistic or other measure. Non-probabilistic grammars may be treated as a special case." @default.
- W174472240 created "2016-06-24" @default.
- W174472240 creator A5052467896 @default.
- W174472240 date "1997-09-17" @default.
- W174472240 modified "2023-09-26" @default.
- W174472240 title "Bilexical Grammars and a Cubic-time Probabilistic Parser" @default.
- W174472240 cites W1516391399 @default.
- W174472240 cites W1585559843 @default.
- W174472240 cites W1600844763 @default.
- W174472240 cites W1798971027 @default.
- W174472240 cites W1942952754 @default.
- W174472240 cites W1986543644 @default.
- W174472240 cites W2047092246 @default.
- W174472240 cites W2052449326 @default.
- W174472240 cites W2071521298 @default.
- W174472240 cites W2076542142 @default.
- W174472240 cites W2099247782 @default.
- W174472240 cites W2110882317 @default.
- W174472240 cites W2114125440 @default.
- W174472240 cites W2131986285 @default.
- W174472240 cites W2134495021 @default.
- W174472240 cites W2142708806 @default.
- W174472240 hasPublicationYear "1997" @default.
- W174472240 type Work @default.
- W174472240 sameAs 174472240 @default.
- W174472240 citedByCount "38" @default.
- W174472240 countsByYear W1744722402012 @default.
- W174472240 countsByYear W1744722402020 @default.
- W174472240 crossrefType "proceedings-article" @default.
- W174472240 hasAuthorship W174472240A5052467896 @default.
- W174472240 hasConcept C134083981 @default.
- W174472240 hasConcept C138885662 @default.
- W174472240 hasConcept C146810361 @default.
- W174472240 hasConcept C147547768 @default.
- W174472240 hasConcept C154945302 @default.
- W174472240 hasConcept C186644900 @default.
- W174472240 hasConcept C204321447 @default.
- W174472240 hasConcept C26022165 @default.
- W174472240 hasConcept C2776397901 @default.
- W174472240 hasConcept C29184939 @default.
- W174472240 hasConcept C41008148 @default.
- W174472240 hasConcept C41895202 @default.
- W174472240 hasConcept C53893814 @default.
- W174472240 hasConcept C67621940 @default.
- W174472240 hasConcept C70845037 @default.
- W174472240 hasConcept C97212296 @default.
- W174472240 hasConceptScore W174472240C134083981 @default.
- W174472240 hasConceptScore W174472240C138885662 @default.
- W174472240 hasConceptScore W174472240C146810361 @default.
- W174472240 hasConceptScore W174472240C147547768 @default.
- W174472240 hasConceptScore W174472240C154945302 @default.
- W174472240 hasConceptScore W174472240C186644900 @default.
- W174472240 hasConceptScore W174472240C204321447 @default.
- W174472240 hasConceptScore W174472240C26022165 @default.
- W174472240 hasConceptScore W174472240C2776397901 @default.
- W174472240 hasConceptScore W174472240C29184939 @default.
- W174472240 hasConceptScore W174472240C41008148 @default.
- W174472240 hasConceptScore W174472240C41895202 @default.
- W174472240 hasConceptScore W174472240C53893814 @default.
- W174472240 hasConceptScore W174472240C67621940 @default.
- W174472240 hasConceptScore W174472240C70845037 @default.
- W174472240 hasConceptScore W174472240C97212296 @default.
- W174472240 hasLocation W1744722401 @default.
- W174472240 hasOpenAccess W174472240 @default.
- W174472240 hasPrimaryLocation W1744722401 @default.
- W174472240 hasRelatedWork W1535015163 @default.
- W174472240 hasRelatedWork W1551104980 @default.
- W174472240 hasRelatedWork W1567570606 @default.
- W174472240 hasRelatedWork W1583697620 @default.
- W174472240 hasRelatedWork W1632114991 @default.
- W174472240 hasRelatedWork W191085059 @default.
- W174472240 hasRelatedWork W1982944197 @default.
- W174472240 hasRelatedWork W1986543644 @default.
- W174472240 hasRelatedWork W2052449326 @default.
- W174472240 hasRelatedWork W2067694419 @default.
- W174472240 hasRelatedWork W2076542142 @default.
- W174472240 hasRelatedWork W2092654472 @default.
- W174472240 hasRelatedWork W2096466920 @default.
- W174472240 hasRelatedWork W2110882317 @default.
- W174472240 hasRelatedWork W2142708806 @default.
- W174472240 hasRelatedWork W2153439141 @default.
- W174472240 hasRelatedWork W2161204834 @default.
- W174472240 hasRelatedWork W2439178139 @default.
- W174472240 hasRelatedWork W2952654140 @default.
- W174472240 hasRelatedWork W3021452258 @default.
- W174472240 isParatext "false" @default.
- W174472240 isRetracted "false" @default.
- W174472240 magId "174472240" @default.
- W174472240 workType "article" @default.