Matches in SemOpenAlex for { <https://semopenalex.org/work/W1745584652> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1745584652 endingPage "335" @default.
- W1745584652 startingPage "329" @default.
- W1745584652 abstract "Summary 1. There are two very different ways of executing linear regression analysis. One is Model I, when the x ‐values are fixed by the experimenter. The other is Model II, in which the x ‐values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step‐by‐step instructions in the Supplementary Information as to how to use loss functions." @default.
- W1745584652 created "2016-06-24" @default.
- W1745584652 creator A5038368927 @default.
- W1745584652 date "2012-03-26" @default.
- W1745584652 modified "2023-10-17" @default.
- W1745584652 title "A primer for biomedical scientists on how to execute Model II linear regression analysis" @default.
- W1745584652 cites W1595347681 @default.
- W1745584652 cites W1968317029 @default.
- W1745584652 cites W2001492974 @default.
- W1745584652 cites W2008994109 @default.
- W1745584652 cites W2026372006 @default.
- W1745584652 cites W2040324894 @default.
- W1745584652 cites W2056581871 @default.
- W1745584652 cites W2113405395 @default.
- W1745584652 cites W2132469061 @default.
- W1745584652 cites W2560209713 @default.
- W1745584652 cites W3122360337 @default.
- W1745584652 doi "https://doi.org/10.1111/j.1440-1681.2011.05643.x" @default.
- W1745584652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22077731" @default.
- W1745584652 hasPublicationYear "2012" @default.
- W1745584652 type Work @default.
- W1745584652 sameAs 1745584652 @default.
- W1745584652 citedByCount "92" @default.
- W1745584652 countsByYear W17455846522012 @default.
- W1745584652 countsByYear W17455846522013 @default.
- W1745584652 countsByYear W17455846522014 @default.
- W1745584652 countsByYear W17455846522015 @default.
- W1745584652 countsByYear W17455846522016 @default.
- W1745584652 countsByYear W17455846522017 @default.
- W1745584652 countsByYear W17455846522018 @default.
- W1745584652 countsByYear W17455846522019 @default.
- W1745584652 countsByYear W17455846522020 @default.
- W1745584652 countsByYear W17455846522021 @default.
- W1745584652 countsByYear W17455846522022 @default.
- W1745584652 countsByYear W17455846522023 @default.
- W1745584652 crossrefType "journal-article" @default.
- W1745584652 hasAuthorship W1745584652A5038368927 @default.
- W1745584652 hasConcept C105795698 @default.
- W1745584652 hasConcept C111919701 @default.
- W1745584652 hasConcept C119857082 @default.
- W1745584652 hasConcept C149782125 @default.
- W1745584652 hasConcept C152877465 @default.
- W1745584652 hasConcept C163175372 @default.
- W1745584652 hasConcept C207609745 @default.
- W1745584652 hasConcept C2776836400 @default.
- W1745584652 hasConcept C33923547 @default.
- W1745584652 hasConcept C41008148 @default.
- W1745584652 hasConcept C44249647 @default.
- W1745584652 hasConcept C48921125 @default.
- W1745584652 hasConcept C83546350 @default.
- W1745584652 hasConceptScore W1745584652C105795698 @default.
- W1745584652 hasConceptScore W1745584652C111919701 @default.
- W1745584652 hasConceptScore W1745584652C119857082 @default.
- W1745584652 hasConceptScore W1745584652C149782125 @default.
- W1745584652 hasConceptScore W1745584652C152877465 @default.
- W1745584652 hasConceptScore W1745584652C163175372 @default.
- W1745584652 hasConceptScore W1745584652C207609745 @default.
- W1745584652 hasConceptScore W1745584652C2776836400 @default.
- W1745584652 hasConceptScore W1745584652C33923547 @default.
- W1745584652 hasConceptScore W1745584652C41008148 @default.
- W1745584652 hasConceptScore W1745584652C44249647 @default.
- W1745584652 hasConceptScore W1745584652C48921125 @default.
- W1745584652 hasConceptScore W1745584652C83546350 @default.
- W1745584652 hasIssue "4" @default.
- W1745584652 hasLocation W17455846521 @default.
- W1745584652 hasLocation W17455846522 @default.
- W1745584652 hasOpenAccess W1745584652 @default.
- W1745584652 hasPrimaryLocation W17455846521 @default.
- W1745584652 hasRelatedWork W2288557197 @default.
- W1745584652 hasRelatedWork W2904016984 @default.
- W1745584652 hasRelatedWork W2983071886 @default.
- W1745584652 hasRelatedWork W3093365844 @default.
- W1745584652 hasRelatedWork W31220157 @default.
- W1745584652 hasRelatedWork W397719029 @default.
- W1745584652 hasRelatedWork W4200124026 @default.
- W1745584652 hasRelatedWork W4283650582 @default.
- W1745584652 hasRelatedWork W4311364185 @default.
- W1745584652 hasRelatedWork W63065332 @default.
- W1745584652 hasVolume "39" @default.
- W1745584652 isParatext "false" @default.
- W1745584652 isRetracted "false" @default.
- W1745584652 magId "1745584652" @default.
- W1745584652 workType "article" @default.