Matches in SemOpenAlex for { <https://semopenalex.org/work/W1746655915> ?p ?o ?g. }
- W1746655915 endingPage "259" @default.
- W1746655915 startingPage "244" @default.
- W1746655915 abstract "1. The CHemistry of the Uplands Model (CHUM), driven by measured and estimated atmospheric deposition, was used to simulate the chemical compositions of three upland Lake District surface waters, Devoke Water (DW), Levers Water (LW) and Mosedale Beck (MB) over several hundred years. 2. “Natural acidification” combined with human activities, notably forest clearance, was assumed to have brought about chemically stable acid moorlands by the period 1000–1500 A.D. Deposition of sulphur, nitrogen, chlorine and heavy metals, released into the atmosphere by coal-burning and industrial processes, then took place, gradually increasing to maximum levels in the late 20th century.3. Surface water concentrations of chloride are consistent with depositional inputs, whereas the transfer of atmospherically deposited sulphur to the surface waters is delayed by temporary retention processes within the catchment. Over the last 40 years, concentrations of pollutant (non-marine) sulphate in the surface waters declined to one-third of their maximum levels. Atmospherically deposited pollutant N continues to accumulate in catchment soils, although a significant fraction appears in surface waters as nitrate. Annual average surface water bicarbonate concentrations were 20 - 60 µmol L-1 in the pristine past, fell nearly to zero in all three waters when acidification was most intense, but now are increasing.4. Combined data from several Lake District upland waters suggest substantial recent increases in concentrations of dissolved organic carbon (DOC). If this can be attributed to acidification reversal, a corresponding decline in DOC concentrations would have occurred as acidification intensified, and pristine surface waters would have been comparatively rich in DOC. 5. Major cationic elements enter the soil-water system in deposition (H+, Na, Mg, K, Ca), from organic matter decomposition (H+), or by chemical weathering (Mg, Al, Ca), and are much affected by sorption to soil organic matter (SOM). The surface soils of all three catchments are acid (current pH ~ 4.5) and so variations in surface water chemistry among sites reflect differences in mineral dissolution rates deeper in the soil-rock profile. The simulations indicate pH values of 6.9, 6.1 and 6.4 for DW, LW and MB respectively in the period up to 1800, followed by declines to minima of c. 6.0, 4.7 and 5.0 in around 1980, then acidification reversal in agreement with observations.6. The transfer of atmospherically deposited heavy metals to surface waters depends upon their sorption by SOM. Nickel, zinc and cadmium adsorb relatively weakly and therefore are quite readily leached, and sensitive to changes in acidification status. The higher affinities of organic matter to Cu and Pb promote retention and these two metals are continuing to accumulate in soil, despite major declines in deposition over the past several decades.7. The WHAM-FTOX model was used to estimate the maximum number of Ephemeroptera, Plecoptera and Trichoptera species in MB through time, as influenced by chemical variability. The maximum number is estimated to have fallen from 14-15 under pristine conditions to 9-10 when acidification was greatest and a modest recovery to 10-11 species since then." @default.
- W1746655915 created "2016-06-24" @default.
- W1746655915 creator A5030844966 @default.
- W1746655915 creator A5057559172 @default.
- W1746655915 date "2011-05-09" @default.
- W1746655915 modified "2023-09-25" @default.
- W1746655915 title "Atmospheric pollution histories of three Cumbrian surface waters" @default.
- W1746655915 cites W1541927459 @default.
- W1746655915 cites W1585294999 @default.
- W1746655915 cites W1665688663 @default.
- W1746655915 cites W1680890084 @default.
- W1746655915 cites W1911364496 @default.
- W1746655915 cites W1931472806 @default.
- W1746655915 cites W1941926109 @default.
- W1746655915 cites W1965811323 @default.
- W1746655915 cites W1967641564 @default.
- W1746655915 cites W1971699519 @default.
- W1746655915 cites W1972699738 @default.
- W1746655915 cites W1974921378 @default.
- W1746655915 cites W1979380326 @default.
- W1746655915 cites W1981892441 @default.
- W1746655915 cites W1986470178 @default.
- W1746655915 cites W1987469079 @default.
- W1746655915 cites W1991145406 @default.
- W1746655915 cites W1993791029 @default.
- W1746655915 cites W1998089443 @default.
- W1746655915 cites W2001380144 @default.
- W1746655915 cites W2002486812 @default.
- W1746655915 cites W2004859212 @default.
- W1746655915 cites W2006447863 @default.
- W1746655915 cites W2006633749 @default.
- W1746655915 cites W2007285265 @default.
- W1746655915 cites W2009726138 @default.
- W1746655915 cites W2009752892 @default.
- W1746655915 cites W2011507439 @default.
- W1746655915 cites W2012963717 @default.
- W1746655915 cites W2013593373 @default.
- W1746655915 cites W2026267390 @default.
- W1746655915 cites W2027112872 @default.
- W1746655915 cites W2028787241 @default.
- W1746655915 cites W2030744305 @default.
- W1746655915 cites W2031601302 @default.
- W1746655915 cites W2041762073 @default.
- W1746655915 cites W2041878124 @default.
- W1746655915 cites W2048849842 @default.
- W1746655915 cites W2051538363 @default.
- W1746655915 cites W2055763451 @default.
- W1746655915 cites W2055878459 @default.
- W1746655915 cites W2057369132 @default.
- W1746655915 cites W2058489347 @default.
- W1746655915 cites W2068515678 @default.
- W1746655915 cites W2070724615 @default.
- W1746655915 cites W2070939380 @default.
- W1746655915 cites W2072441266 @default.
- W1746655915 cites W2072533498 @default.
- W1746655915 cites W2073975529 @default.
- W1746655915 cites W2074544187 @default.
- W1746655915 cites W2089661870 @default.
- W1746655915 cites W2099880688 @default.
- W1746655915 cites W2101436291 @default.
- W1746655915 cites W2102438834 @default.
- W1746655915 cites W2108665298 @default.
- W1746655915 cites W2133009194 @default.
- W1746655915 cites W2172300067 @default.
- W1746655915 cites W2332202068 @default.
- W1746655915 cites W40927942 @default.
- W1746655915 cites W4230590835 @default.
- W1746655915 cites W4233684251 @default.
- W1746655915 cites W77164753 @default.
- W1746655915 cites W2033730347 @default.
- W1746655915 doi "https://doi.org/10.1111/j.1365-2427.2011.02617.x" @default.
- W1746655915 hasPublicationYear "2011" @default.
- W1746655915 type Work @default.
- W1746655915 sameAs 1746655915 @default.
- W1746655915 citedByCount "3" @default.
- W1746655915 countsByYear W17466559152018 @default.
- W1746655915 countsByYear W17466559152021 @default.
- W1746655915 crossrefType "journal-article" @default.
- W1746655915 hasAuthorship W1746655915A5030844966 @default.
- W1746655915 hasAuthorship W1746655915A5057559172 @default.
- W1746655915 hasBestOaLocation W17466559152 @default.
- W1746655915 hasConcept C111368507 @default.
- W1746655915 hasConcept C127313418 @default.
- W1746655915 hasConcept C18903297 @default.
- W1746655915 hasConcept C205649164 @default.
- W1746655915 hasConcept C39432304 @default.
- W1746655915 hasConcept C521259446 @default.
- W1746655915 hasConcept C86803240 @default.
- W1746655915 hasConceptScore W1746655915C111368507 @default.
- W1746655915 hasConceptScore W1746655915C127313418 @default.
- W1746655915 hasConceptScore W1746655915C18903297 @default.
- W1746655915 hasConceptScore W1746655915C205649164 @default.
- W1746655915 hasConceptScore W1746655915C39432304 @default.
- W1746655915 hasConceptScore W1746655915C521259446 @default.
- W1746655915 hasConceptScore W1746655915C86803240 @default.
- W1746655915 hasIssue "2" @default.
- W1746655915 hasLocation W17466559151 @default.
- W1746655915 hasLocation W17466559152 @default.