Matches in SemOpenAlex for { <https://semopenalex.org/work/W174703561> ?p ?o ?g. }
- W174703561 abstract "OF DISSERTATION Polytopes Arising from Binary Multi-way Contingency Tables and Characteristic Imsets for Bayesian Networks The main theme of this dissertation is the study of polytopes arising from binary multi-way contingency tables and characteristic imsets for Bayesian networks. Firstly, we study on three-way tables whose entries are independent Bernoulli random variables with canonical parameters under no three-way interaction generalized linear models. Here, we use the sequential importance sampling (SIS) method with the conditional Poisson (CP) distribution to sample binary three-way tables with the sufficient statistics, i.e., all two-way marginal sums, fixed. Compared with Monte Carlo Markov Chain (MCMC) approach with a Markov basis (MB), SIS procedure has the advantage that it does not require expensive or prohibitive pre-computations. Note that this problem can also be considered as estimating the number of lattice points inside the polytope defined by the zero-one and two-way marginal constraints. The theorems in Chapter 2 give the parameters for the CP distribution on each column when it is sampled. In this chapter, we also present the algorithms, the simulation results, and the results for Samson’s monks data. Bayesian networks, a part of the family of probabilistic graphical models, are widely applied in many areas and much work has been done in model selections for Bayesian networks. The second part of this dissertation investigates the problem of finding the optimal graph by using characteristic imsets, where characteristic imsets are defined as 0-1 vector representations of Bayesian networks which are unique up to Markov equivalence. Characteristic imset polytopes are defined as the convex hull of all characteristic imsets we consider. It was proven that the problem of finding optimal Bayesian network for a specific dataset can be converted to a linear programming problem over the characteristic imset polytope [51]. In Chapter 3, we first consider characteristic imset polytopes for all diagnosis models and show that these polytopes are direct product of simplices. Then we give the combinatorial description of all edges and all facets of these polytopes. At the end of this chapter, we generalize these results to the characteristic imset polytopes for all Bayesian networks with a fixed underlying ordering of nodes. Chapter 4 includes discussion and future work on these two topics." @default.
- W174703561 created "2016-06-24" @default.
- W174703561 creator A5083365013 @default.
- W174703561 date "2013-01-01" @default.
- W174703561 modified "2023-09-25" @default.
- W174703561 title "Polytopes Arising from Binary Multi-way Contingency Tables and Characteristic Imsets for Bayesian Networks" @default.
- W174703561 cites W1484259954 @default.
- W174703561 cites W1530964327 @default.
- W174703561 cites W1542492454 @default.
- W174703561 cites W1596706667 @default.
- W174703561 cites W1600755436 @default.
- W174703561 cites W1604572656 @default.
- W174703561 cites W1963547452 @default.
- W174703561 cites W1968817980 @default.
- W174703561 cites W1975921416 @default.
- W174703561 cites W1978159628 @default.
- W174703561 cites W1980771638 @default.
- W174703561 cites W1984815404 @default.
- W174703561 cites W1995642397 @default.
- W174703561 cites W1999878910 @default.
- W174703561 cites W2000451060 @default.
- W174703561 cites W2002374079 @default.
- W174703561 cites W2004380822 @default.
- W174703561 cites W2008906462 @default.
- W174703561 cites W2009449033 @default.
- W174703561 cites W2013035681 @default.
- W174703561 cites W2013567125 @default.
- W174703561 cites W2021743708 @default.
- W174703561 cites W2021903957 @default.
- W174703561 cites W2032262903 @default.
- W174703561 cites W2034574601 @default.
- W174703561 cites W2038056590 @default.
- W174703561 cites W2038254774 @default.
- W174703561 cites W2041563000 @default.
- W174703561 cites W2050080366 @default.
- W174703561 cites W2084356875 @default.
- W174703561 cites W2088515005 @default.
- W174703561 cites W2092545905 @default.
- W174703561 cites W2099554398 @default.
- W174703561 cites W2111061246 @default.
- W174703561 cites W2115395277 @default.
- W174703561 cites W2127374659 @default.
- W174703561 cites W2132175673 @default.
- W174703561 cites W2162671780 @default.
- W174703561 cites W2313563338 @default.
- W174703561 cites W2523753330 @default.
- W174703561 cites W2560285298 @default.
- W174703561 cites W2752259152 @default.
- W174703561 cites W32516901 @default.
- W174703561 cites W113525123 @default.
- W174703561 hasPublicationYear "2013" @default.
- W174703561 type Work @default.
- W174703561 sameAs 174703561 @default.
- W174703561 citedByCount "1" @default.
- W174703561 countsByYear W1747035612015 @default.
- W174703561 crossrefType "journal-article" @default.
- W174703561 hasAuthorship W174703561A5083365013 @default.
- W174703561 hasConcept C105795698 @default.
- W174703561 hasConcept C107673813 @default.
- W174703561 hasConcept C111350023 @default.
- W174703561 hasConcept C114614502 @default.
- W174703561 hasConcept C145691206 @default.
- W174703561 hasConcept C155846161 @default.
- W174703561 hasConcept C28826006 @default.
- W174703561 hasConcept C33724603 @default.
- W174703561 hasConcept C33923547 @default.
- W174703561 hasConcept C41008148 @default.
- W174703561 hasConcept C55974624 @default.
- W174703561 hasConcept C91998498 @default.
- W174703561 hasConcept C98763669 @default.
- W174703561 hasConceptScore W174703561C105795698 @default.
- W174703561 hasConceptScore W174703561C107673813 @default.
- W174703561 hasConceptScore W174703561C111350023 @default.
- W174703561 hasConceptScore W174703561C114614502 @default.
- W174703561 hasConceptScore W174703561C145691206 @default.
- W174703561 hasConceptScore W174703561C155846161 @default.
- W174703561 hasConceptScore W174703561C28826006 @default.
- W174703561 hasConceptScore W174703561C33724603 @default.
- W174703561 hasConceptScore W174703561C33923547 @default.
- W174703561 hasConceptScore W174703561C41008148 @default.
- W174703561 hasConceptScore W174703561C55974624 @default.
- W174703561 hasConceptScore W174703561C91998498 @default.
- W174703561 hasConceptScore W174703561C98763669 @default.
- W174703561 hasLocation W1747035611 @default.
- W174703561 hasOpenAccess W174703561 @default.
- W174703561 hasPrimaryLocation W1747035611 @default.
- W174703561 hasRelatedWork W1692926957 @default.
- W174703561 hasRelatedWork W188345382 @default.
- W174703561 hasRelatedWork W2070013518 @default.
- W174703561 hasRelatedWork W2080404600 @default.
- W174703561 hasRelatedWork W2092561912 @default.
- W174703561 hasRelatedWork W2126934800 @default.
- W174703561 hasRelatedWork W2181885807 @default.
- W174703561 hasRelatedWork W2218968238 @default.
- W174703561 hasRelatedWork W2267956107 @default.
- W174703561 hasRelatedWork W2288389686 @default.
- W174703561 hasRelatedWork W2914348296 @default.
- W174703561 hasRelatedWork W2920848342 @default.
- W174703561 hasRelatedWork W2951393143 @default.
- W174703561 hasRelatedWork W2951857589 @default.