Matches in SemOpenAlex for { <https://semopenalex.org/work/W1747184433> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W1747184433 endingPage "289" @default.
- W1747184433 startingPage "283" @default.
- W1747184433 abstract "Replica exchange (RE, or called parallel tempering) method can be used as a super simulated annealing. This chapter presents an effective global search algorithm in the use of replica exchange strategy refined by SA. Markov chain Monte Carlo (MCMC) (Andrieu et al., Mach Learn 50(1–2):5–43, 2003; Baldi and Brunak, Bioinformatics: the machine learning approach, 2nd edn. MIT, Cambridge, 2001; Bootsma and Ferguson, Proc Natl Acad Sci U S A 104(18):7588–7593, 2007; Iba, Int J Mod Phys C 12(5):623–656, 2001) algorithms are sampling from probability distributions based on constructing a Markov chain (Ross, Introduction to probability models, 9th edn. Elsevier Science & Technology Books Publisher, 2006) that has the desired distribution as its equilibrium distribution (Wikipedia, the free encyclopedia (en.wikipedia.org/wiki/): Epidemic model, Compartmental models in epidemiology, Mathematical modelling of infectious disease, Markov chain Monte Carlo, Parallel tempering, Metropolis-Hastings algorithm, etc. (and references therein)). The sampling strategy is very critical for a successful MCMC algorithm. However, in practice, the MCMC sampling methods such as Gibbs sampling (Baldi and Brunak, Bioinformatics: the machine learning approach, 2nd edn. MIT, Cambridge, 2001, Chapter 4.5) (from this reference we may know that Gibbs sampling can be rewritten as a Metropolis algorithm), Metropolis-Hastings (MH) algorithm (Baldi and Brunak, Bioinformatics: the machine learning approach, 2nd edn. MIT, Cambridge, 2001, Chapter 4.5), Multiple-try Metropolis (MM) algorithm sometimes just randomly walk (Ross, Introduction to probability models, 9th edn. Elsevier Science & Technology Books Publisher, 2006) and take a long time to explore all the solution space, will often double back and cover ground already covered, and usually own a slow algorithm convergence. In this chapter a more efficient sampling strategy of simulated annealing (Kirkpatrick et al., Science 220(4598):671–680, 1983)-refined RE (Earl and Deem, Phys Chem Chem Phys 7:3910–3916, 2005; Li et al., App Math Comput 212(1):216–228, 2009; Li et al., Parallel Comput 35(5):269–283, 2009; Swendsen and Wang, Phys Rev Lett 57(21):2607–2609, 1986; Thachuk et al., BMC Bioinformatics 8:342–362, 2007) is enclosed into the MCMC simulation." @default.
- W1747184433 created "2016-06-24" @default.
- W1747184433 creator A5073312483 @default.
- W1747184433 date "2015-01-01" @default.
- W1747184433 modified "2023-09-24" @default.
- W1747184433 title "Simulated Annealing Refined Replica Exchange Global Search Algorithm" @default.
- W1747184433 cites W1972094069 @default.
- W1747184433 cites W2013145865 @default.
- W1747184433 cites W2022826851 @default.
- W1747184433 cites W2038367074 @default.
- W1747184433 cites W2040809566 @default.
- W1747184433 cites W2078644085 @default.
- W1747184433 cites W2106109507 @default.
- W1747184433 cites W2135194391 @default.
- W1747184433 cites W2171283513 @default.
- W1747184433 cites W3098919389 @default.
- W1747184433 doi "https://doi.org/10.1007/978-94-017-7318-8_15" @default.
- W1747184433 hasPublicationYear "2015" @default.
- W1747184433 type Work @default.
- W1747184433 sameAs 1747184433 @default.
- W1747184433 citedByCount "0" @default.
- W1747184433 crossrefType "book-chapter" @default.
- W1747184433 hasAuthorship W1747184433A5073312483 @default.
- W1747184433 hasConcept C11413529 @default.
- W1747184433 hasConcept C126980161 @default.
- W1747184433 hasConcept C166957645 @default.
- W1747184433 hasConcept C191897082 @default.
- W1747184433 hasConcept C192562407 @default.
- W1747184433 hasConcept C205649164 @default.
- W1747184433 hasConcept C2775937380 @default.
- W1747184433 hasConcept C2777855556 @default.
- W1747184433 hasConcept C41008148 @default.
- W1747184433 hasConceptScore W1747184433C11413529 @default.
- W1747184433 hasConceptScore W1747184433C126980161 @default.
- W1747184433 hasConceptScore W1747184433C166957645 @default.
- W1747184433 hasConceptScore W1747184433C191897082 @default.
- W1747184433 hasConceptScore W1747184433C192562407 @default.
- W1747184433 hasConceptScore W1747184433C205649164 @default.
- W1747184433 hasConceptScore W1747184433C2775937380 @default.
- W1747184433 hasConceptScore W1747184433C2777855556 @default.
- W1747184433 hasConceptScore W1747184433C41008148 @default.
- W1747184433 hasLocation W17471844331 @default.
- W1747184433 hasOpenAccess W1747184433 @default.
- W1747184433 hasPrimaryLocation W17471844331 @default.
- W1747184433 hasRelatedWork W1481184094 @default.
- W1747184433 hasRelatedWork W1514085392 @default.
- W1747184433 hasRelatedWork W2350879319 @default.
- W1747184433 hasRelatedWork W2354823531 @default.
- W1747184433 hasRelatedWork W2365179979 @default.
- W1747184433 hasRelatedWork W2372446501 @default.
- W1747184433 hasRelatedWork W2375005589 @default.
- W1747184433 hasRelatedWork W2385763152 @default.
- W1747184433 hasRelatedWork W2386088810 @default.
- W1747184433 hasRelatedWork W2576147416 @default.
- W1747184433 isParatext "false" @default.
- W1747184433 isRetracted "false" @default.
- W1747184433 magId "1747184433" @default.
- W1747184433 workType "book-chapter" @default.