Matches in SemOpenAlex for { <https://semopenalex.org/work/W174865397> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W174865397 abstract "In the present paper, we propose a neurally-inspired model of the primate motion processing hierarchy and describe its implementation as a computer simulation. The model aims to explain how a hierarchical feedforward network consisting of neurons in the cortical areas V1, MT, MST, and 7a of primates achieves the detection of different kinds of motion patterns. Moreover, the model includes a feedback gating network that implements a biologically plausible mechanism of visual attention. This mechanism is used for sequential localization and fine-grained inspection of every motion pattern detected in the visual scene. 1 The Feedforward Mechanism of Motion Detection In the present paper, we propose a neurally-inspired model of the primate motion processing hierarchy and describe its implementation as a computer simulation. The model aims to explain how a hierarchical feed-forward network consisting of neurons in the cortical areas V1, MT, MST, and 7a of primates achieves the detection of different kinds of motion patterns. Cells in striate area V1 are well known to be tuned towards a particular local speed and direction of motion in at least three main speed ranges [1]. In the model, V1 neurons estimate local speed and direction in five-frame, 256×256 pixel image sequences using spatiotemporal filters (e.g., [2]). Their direction selectivity is restricted to 12 distinct, Gaussian-shaped tuning curves. Each tuning curve has a standard deviation of 30o and represents the selectivity for one of 12 different directions spaced 30o apart (0o, 30o, ..., 330o). V1 is represented by a 60×60 array of hypercolumns. The receptive fields (RFs) of V1 neurons are circular and homogeneously distributed across the visual field, with RFs of neighboring hypercolumns overlapping by 20%. In area MT a high proportion of cells are tuned towards a particular local speed and direction of movement, similar to direction and speed selective cells in V1 [3, 4]. A proportion of MT neurons are also selective for a particular angle between movement direction and spatial speed gradient [5]. Both types of neurons are represented in the MT layer of the model, which is a 30×30 array of hypercolumns. Each MT cell receives input from a 4×4 field of V1 neurons with the same direction and speed selectivity. Neurons in area MST are tuned to complex motion patterns: expand or approach, shrink or recede, rotation, with RFs covering most of the visual field [6, 7]. Two types of neurons are modeled: one type selective for translation (as in V1) and another type selective for spiral motion (clockwise and counterclockwise rotation, expansion, contraction and combinations). MST is simulated as a 5×5 array of hypercolumns. Each MST cell receives input from a large group (covering 60% of the visual field) of MT neurons that respond to a particular motion/gradient angle. Any coherent motion/gradient angle indicates a particular type of spiral motion. Finally, area 7a seems to involve at least four different types of computations [8]. Here, neurons are selective for translation and spiral motion as in MST, but they have even larger RFs. They are also selective for rotation (regardless of direction) and radial motion (regardless of direction). In the simulation, area 7a is represented by a 4×4 array of hypercolumns. Each 7a cell receives input from a 4×4 field of MST neurons that have the relevant tuning. Rotation cells and radial motion cells only receive input from MST neurons that respond to spiral motion involving any rotation or any radial motion, respectively. Fig. 1 shows the activation of neurons in the model as induced by a sample stimulus. Note that in the actual visualization different colors indicate the response to particular angles between motion and speed gradient in MT gradient neurons. In the present example, the gray levels indicate that the neurons selective for a 90o angle gave by far the strongest responses. A consistent 90o angle across all directions of motion signifies a pattern of clockwise rotation. Correspondingly, the maximum activation of the spiral neurons in areas MST and 7a corresponds to the clockwise rotation pattern (90o angle). Finally, area 7a also shows a substantial response to rotation in the medium-speed range, while there is no visible activation that would indicate radial motion. 2 The Feedback Mechanism of Visual Attention Most of the computational models of primate motion perception that have been proposed concentrate on bottom-up processing and do not address attentional issues. However, there is evidence that the responses of neurons in areas MT and MST can be modulated by attention (Treue & Maunsell, 1996). Moreover, we claim that attention is necessary for a precise localization of motion patterns in image sequences. As a result of the model’s feedforward computations, the neural responses in the highlevel areas (MST and 7a) roughly indicate the kind of motion patterns presented as an input but do not localize the spatial position of the patterns. In order to create a comprehensive motion model that is in agreement with biological findings and is capable of localizing motion patterns, we added a mechanism of visual attention to it. We decided to use the biologically plausible Selective Tuning approach [9], requiring the introduction of a feedback gating network to the model. Each neuron in the original motion hierarchy received an assembly of gating units that control the bottom-up information flow to that neuron." @default.
- W174865397 created "2016-06-24" @default.
- W174865397 creator A5036008539 @default.
- W174865397 creator A5045706295 @default.
- W174865397 creator A5047790191 @default.
- W174865397 creator A5072681668 @default.
- W174865397 creator A5085846126 @default.
- W174865397 date "2002-01-01" @default.
- W174865397 modified "2023-10-18" @default.
- W174865397 title "A Neurally-Inspired Model for Detecting and Localizing Simple Motion Patterns in Image Sequences" @default.
- W174865397 cites W1498220309 @default.
- W174865397 cites W185598128 @default.
- W174865397 cites W1911029627 @default.
- W174865397 cites W1966651481 @default.
- W174865397 cites W1988276046 @default.
- W174865397 cites W1991870120 @default.
- W174865397 cites W1995274035 @default.
- W174865397 cites W2001367356 @default.
- W174865397 cites W2022660621 @default.
- W174865397 cites W2029451354 @default.
- W174865397 cites W2063632045 @default.
- W174865397 cites W2089597841 @default.
- W174865397 cites W2162201777 @default.
- W174865397 cites W2280695501 @default.
- W174865397 hasPublicationYear "2002" @default.
- W174865397 type Work @default.
- W174865397 sameAs 174865397 @default.
- W174865397 citedByCount "6" @default.
- W174865397 countsByYear W1748653972013 @default.
- W174865397 crossrefType "journal-article" @default.
- W174865397 hasAuthorship W174865397A5036008539 @default.
- W174865397 hasAuthorship W174865397A5045706295 @default.
- W174865397 hasAuthorship W174865397A5047790191 @default.
- W174865397 hasAuthorship W174865397A5072681668 @default.
- W174865397 hasAuthorship W174865397A5085846126 @default.
- W174865397 hasConcept C104114177 @default.
- W174865397 hasConcept C124101348 @default.
- W174865397 hasConcept C127413603 @default.
- W174865397 hasConcept C133731056 @default.
- W174865397 hasConcept C144986985 @default.
- W174865397 hasConcept C153180895 @default.
- W174865397 hasConcept C154945302 @default.
- W174865397 hasConcept C160633673 @default.
- W174865397 hasConcept C16345878 @default.
- W174865397 hasConcept C2524010 @default.
- W174865397 hasConcept C31972630 @default.
- W174865397 hasConcept C33923547 @default.
- W174865397 hasConcept C38858127 @default.
- W174865397 hasConcept C41008148 @default.
- W174865397 hasConceptScore W174865397C104114177 @default.
- W174865397 hasConceptScore W174865397C124101348 @default.
- W174865397 hasConceptScore W174865397C127413603 @default.
- W174865397 hasConceptScore W174865397C133731056 @default.
- W174865397 hasConceptScore W174865397C144986985 @default.
- W174865397 hasConceptScore W174865397C153180895 @default.
- W174865397 hasConceptScore W174865397C154945302 @default.
- W174865397 hasConceptScore W174865397C160633673 @default.
- W174865397 hasConceptScore W174865397C16345878 @default.
- W174865397 hasConceptScore W174865397C2524010 @default.
- W174865397 hasConceptScore W174865397C31972630 @default.
- W174865397 hasConceptScore W174865397C33923547 @default.
- W174865397 hasConceptScore W174865397C38858127 @default.
- W174865397 hasConceptScore W174865397C41008148 @default.
- W174865397 hasLocation W1748653971 @default.
- W174865397 hasOpenAccess W174865397 @default.
- W174865397 hasPrimaryLocation W1748653971 @default.
- W174865397 hasRelatedWork W1498220309 @default.
- W174865397 hasRelatedWork W1732061388 @default.
- W174865397 hasRelatedWork W1958844539 @default.
- W174865397 hasRelatedWork W2003752843 @default.
- W174865397 hasRelatedWork W2059534894 @default.
- W174865397 hasRelatedWork W2072974437 @default.
- W174865397 hasRelatedWork W2112135624 @default.
- W174865397 hasRelatedWork W2136787869 @default.
- W174865397 hasRelatedWork W2141107589 @default.
- W174865397 hasRelatedWork W2141560585 @default.
- W174865397 hasRelatedWork W2143354173 @default.
- W174865397 hasRelatedWork W2158825824 @default.
- W174865397 hasRelatedWork W2159362313 @default.
- W174865397 hasRelatedWork W2161695418 @default.
- W174865397 hasRelatedWork W2165715280 @default.
- W174865397 hasRelatedWork W2170149099 @default.
- W174865397 hasRelatedWork W2170863838 @default.
- W174865397 hasRelatedWork W2172004540 @default.
- W174865397 hasRelatedWork W2537961941 @default.
- W174865397 hasRelatedWork W1866642484 @default.
- W174865397 isParatext "false" @default.
- W174865397 isRetracted "false" @default.
- W174865397 magId "174865397" @default.
- W174865397 workType "article" @default.