Matches in SemOpenAlex for { <https://semopenalex.org/work/W174916562> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W174916562 abstract "Monitoring and analysis of river water quality is an important element in the environmental monitoring policy and management. Fishing, tourism, drinking and most importantly domestic usage require an acceptable level of river water quality. The modeling of complex and nonlinear systems like river is difficult due to the presence of many variables and disturbance. Usually, the dynamic of the problem is modeled using mathematical relationship. However, most of the time a model requires a lot of information and running its simulation needs a significant amount of time. This project attempts to avoid this process by approximating the problem using a type of Artificial Neural Networks (ANN), which is the Radial Basis Function Neural Networks (RBFNN) instead of commonly used ANN: the Multilayer Perceptron (MLP). RBFNN was assessed to forecast water quality in Muar River, Malaysia where historical and lagged data of water quality were used as input for the networks, and forecasting accuracy was evaluated by using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (CC). It was found that the RBFNN could be used effectively to predict one-day ahead of turbidity and aluminium value of Muar River. The RBF network produced slightly better results in forecasting with lower value of RMSE; 0.0394 and MAE; 0.0208 but higher value of CC; 0.5385 compared to MLP network for value of RMSE; 0.0435, MAE; 0.0230 and CC; 0.5213 in aluminium forecasting. The same observations were also found in turbidity forecasting where RBF network for value of RMSE; 40.3812, MAE; 25.8489 and CC; 0.6821 slightly better than MLP network for value of RMSE; 40.5804, MAE; 26.9558 and CC; 0.6453. RBF network processing time proved to be 77.9% to 80.9% faster than MLP network in forecasting aluminium and turbidity." @default.
- W174916562 created "2016-06-24" @default.
- W174916562 creator A5036921824 @default.
- W174916562 creator A5071113347 @default.
- W174916562 date "2013-12-01" @default.
- W174916562 modified "2023-09-27" @default.
- W174916562 title "Forecasting Muar river water quality using radial basis function neural network" @default.
- W174916562 cites W1998442441 @default.
- W174916562 cites W2002016471 @default.
- W174916562 cites W2007700211 @default.
- W174916562 cites W2029803196 @default.
- W174916562 cites W2077011856 @default.
- W174916562 cites W2142397074 @default.
- W174916562 cites W2256265113 @default.
- W174916562 cites W238574046 @default.
- W174916562 cites W94523489 @default.
- W174916562 hasPublicationYear "2013" @default.
- W174916562 type Work @default.
- W174916562 sameAs 174916562 @default.
- W174916562 citedByCount "0" @default.
- W174916562 crossrefType "dissertation" @default.
- W174916562 hasAuthorship W174916562A5036921824 @default.
- W174916562 hasAuthorship W174916562A5071113347 @default.
- W174916562 hasConcept C105795698 @default.
- W174916562 hasConcept C127413603 @default.
- W174916562 hasConcept C132917294 @default.
- W174916562 hasConcept C139945424 @default.
- W174916562 hasConcept C154945302 @default.
- W174916562 hasConcept C179717631 @default.
- W174916562 hasConcept C187320778 @default.
- W174916562 hasConcept C18903297 @default.
- W174916562 hasConcept C2780797713 @default.
- W174916562 hasConcept C33923547 @default.
- W174916562 hasConcept C41008148 @default.
- W174916562 hasConcept C50644808 @default.
- W174916562 hasConcept C76886044 @default.
- W174916562 hasConcept C86803240 @default.
- W174916562 hasConcept C98856871 @default.
- W174916562 hasConceptScore W174916562C105795698 @default.
- W174916562 hasConceptScore W174916562C127413603 @default.
- W174916562 hasConceptScore W174916562C132917294 @default.
- W174916562 hasConceptScore W174916562C139945424 @default.
- W174916562 hasConceptScore W174916562C154945302 @default.
- W174916562 hasConceptScore W174916562C179717631 @default.
- W174916562 hasConceptScore W174916562C187320778 @default.
- W174916562 hasConceptScore W174916562C18903297 @default.
- W174916562 hasConceptScore W174916562C2780797713 @default.
- W174916562 hasConceptScore W174916562C33923547 @default.
- W174916562 hasConceptScore W174916562C41008148 @default.
- W174916562 hasConceptScore W174916562C50644808 @default.
- W174916562 hasConceptScore W174916562C76886044 @default.
- W174916562 hasConceptScore W174916562C86803240 @default.
- W174916562 hasConceptScore W174916562C98856871 @default.
- W174916562 hasLocation W1749165621 @default.
- W174916562 hasOpenAccess W174916562 @default.
- W174916562 hasPrimaryLocation W1749165621 @default.
- W174916562 hasRelatedWork W1983083989 @default.
- W174916562 hasRelatedWork W2109728912 @default.
- W174916562 hasRelatedWork W2135254853 @default.
- W174916562 hasRelatedWork W2146531470 @default.
- W174916562 hasRelatedWork W2184519285 @default.
- W174916562 hasRelatedWork W2185792594 @default.
- W174916562 hasRelatedWork W2247991820 @default.
- W174916562 hasRelatedWork W2316522976 @default.
- W174916562 hasRelatedWork W2341251045 @default.
- W174916562 hasRelatedWork W2387731981 @default.
- W174916562 hasRelatedWork W2491206507 @default.
- W174916562 hasRelatedWork W2597214597 @default.
- W174916562 hasRelatedWork W2869184005 @default.
- W174916562 hasRelatedWork W3021036605 @default.
- W174916562 hasRelatedWork W3099835817 @default.
- W174916562 hasRelatedWork W3129932793 @default.
- W174916562 hasRelatedWork W3136420364 @default.
- W174916562 hasRelatedWork W3193899010 @default.
- W174916562 hasRelatedWork W2321516359 @default.
- W174916562 hasRelatedWork W2464913542 @default.
- W174916562 isParatext "false" @default.
- W174916562 isRetracted "false" @default.
- W174916562 magId "174916562" @default.
- W174916562 workType "dissertation" @default.