Matches in SemOpenAlex for { <https://semopenalex.org/work/W174931039> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W174931039 abstract "Geological phenomena such as lithospheric melt propagation, tectonic plate subduction, earthquakes and tsunamis, landslides and soil erosion are all controlled by coupled processes and referred to as coupled problems. Coupled problems are defined as the simultaneous presence of at least two different mechanical or chemical (or a combination of both) processes. The main challenge in investigating such phenomena in geological systems is that they occur over a long period of time and their size can be up to thousands of kilometers. Numerical models are considered to be a reasonable approach to deal with such scales and therefore they have become a fundamental tool in geophysics and engineering. However, typically numerical codes are tailored to address a single coupled problem rather than providing a unifying framework to deal with a range of such problems. The aim of the thesis is to develop a general numerical framework which is capable of simulating coupled processes in seemingly different geological problems. The proposed numerical framework is built using the Finite Element Method (FEM) and then modified and applied differently to address three fully coupled geophysical challenges: poroelastoplasticity, chemical degradation of soil, and stress-driven melt segregation. To model poroelastoplasticity processes, I apply the proposed numerical algorithm to investigate mechanical-hydraulic coupling in soil. In poroelastoplasticity, the incremental stress-strain is fully coupled with the fluid flow equation as the governing equations. The constitutive behavior of a saturated porous material is described in the domain of large strains. To describe the soil plastic behavior, the Drucker-Prager yield criteria and non-associated flow rule are implemented in the numerical algorithm. Examples ranging from a well-known one dimensional elastic consolidation problem to three dimensional soil elastoplasticity problem are simulated and analyzed. Comparison the numerical results of this study to, analytical and numerical solutions from other studies attests for the performance of the proposed numerical algorithm. Moreover the results illustrate the ease of modifying the general framework for different applications in soil elastoplasticity and demonstrate its potential to be a new strong tool in understanding of the mechanical behavior of real soils. To simulate the fully coupled mechanical-hydraulic-chemical (MHC) processes of soil degradation, I developed numerical tools that implement a mathematical model of finite elastoplastic deformation and pore pressure evolution coupled with chemical transport in a saturated porous media. Both 1D and 2D models subjected to chemical degradation and mechanical loading were simulated. The results show the successful application of the proposed algorithm and indicate that chemical degradation has a significant effect on the elastoplastic behavior of soil. In particular, the coupling between porosity and fluid flow along with chemical reaction is shown to enable fingering instability in soil. To address stress-driven melt segregation, I implement the equations governing melt flow and solid deformation in simulations to elucidate the interactions between solid and melt phases. The proposed numerical algorithm is modified to analyze the coupling of lithospheric shear zones and melt flow. The simple model proposed consists of mass transfer (representing melting) and a power law coefficient. The coefficient determines the strain-rate dependence of the viscosity of the matrix. A linear instability analysis for pure shear extension is tailored to represent deformation of a partly molten rock. Examples of large scale pure shear extension are simulated and a modified FEM method is used to improve the numerical results by enabling strong strain concentrations in the simulations. The results showed that instabilities can initiate with either strain or melt localization, followed by a coupled evolution of melt and shear bands. This indicates that local increase in melt fraction (due to segregation and/or local melting) promotes strain localization and may lead to the formation of large shear-bands. It also suggests that melt segregation may enable rifting where tectonic forces are not sufficient to induce melt-free rifting (without requiring observable volcanism). Furthermore, simulations show asymmetric melt distribution arising from melt-shear interactions in the existence of well-developed shear-bands. Implications of these results are discussed in the context of crustal deformation patterns. The results from the three applications suggest that the algorithms are not only efficient but also robust. The methods and the algorithm developed in this study are quite general and can be modified and extended to deal with other types of nonlinear problems in geophysics." @default.
- W174931039 created "2016-06-24" @default.
- W174931039 creator A5013246080 @default.
- W174931039 date "2013-01-01" @default.
- W174931039 modified "2023-09-26" @default.
- W174931039 title "Numerical investigation of coupled problems in geological systems" @default.
- W174931039 hasPublicationYear "2013" @default.
- W174931039 type Work @default.
- W174931039 sameAs 174931039 @default.
- W174931039 citedByCount "0" @default.
- W174931039 crossrefType "journal-article" @default.
- W174931039 hasAuthorship W174931039A5013246080 @default.
- W174931039 hasConcept C121332964 @default.
- W174931039 hasConcept C123157820 @default.
- W174931039 hasConcept C127313418 @default.
- W174931039 hasConcept C127413603 @default.
- W174931039 hasConcept C131584629 @default.
- W174931039 hasConcept C134306372 @default.
- W174931039 hasConcept C135628077 @default.
- W174931039 hasConcept C151730666 @default.
- W174931039 hasConcept C165205528 @default.
- W174931039 hasConcept C16942324 @default.
- W174931039 hasConcept C187320778 @default.
- W174931039 hasConcept C202973686 @default.
- W174931039 hasConcept C33923547 @default.
- W174931039 hasConcept C41008148 @default.
- W174931039 hasConcept C48753275 @default.
- W174931039 hasConcept C500300565 @default.
- W174931039 hasConcept C57879066 @default.
- W174931039 hasConcept C58097730 @default.
- W174931039 hasConcept C66938386 @default.
- W174931039 hasConcept C77928131 @default.
- W174931039 hasConcept C78519656 @default.
- W174931039 hasConcept C8058405 @default.
- W174931039 hasConceptScore W174931039C121332964 @default.
- W174931039 hasConceptScore W174931039C123157820 @default.
- W174931039 hasConceptScore W174931039C127313418 @default.
- W174931039 hasConceptScore W174931039C127413603 @default.
- W174931039 hasConceptScore W174931039C131584629 @default.
- W174931039 hasConceptScore W174931039C134306372 @default.
- W174931039 hasConceptScore W174931039C135628077 @default.
- W174931039 hasConceptScore W174931039C151730666 @default.
- W174931039 hasConceptScore W174931039C165205528 @default.
- W174931039 hasConceptScore W174931039C16942324 @default.
- W174931039 hasConceptScore W174931039C187320778 @default.
- W174931039 hasConceptScore W174931039C202973686 @default.
- W174931039 hasConceptScore W174931039C33923547 @default.
- W174931039 hasConceptScore W174931039C41008148 @default.
- W174931039 hasConceptScore W174931039C48753275 @default.
- W174931039 hasConceptScore W174931039C500300565 @default.
- W174931039 hasConceptScore W174931039C57879066 @default.
- W174931039 hasConceptScore W174931039C58097730 @default.
- W174931039 hasConceptScore W174931039C66938386 @default.
- W174931039 hasConceptScore W174931039C77928131 @default.
- W174931039 hasConceptScore W174931039C78519656 @default.
- W174931039 hasConceptScore W174931039C8058405 @default.
- W174931039 hasLocation W1749310391 @default.
- W174931039 hasOpenAccess W174931039 @default.
- W174931039 hasPrimaryLocation W1749310391 @default.
- W174931039 hasRelatedWork W1508937296 @default.
- W174931039 hasRelatedWork W1515306160 @default.
- W174931039 hasRelatedWork W1871075708 @default.
- W174931039 hasRelatedWork W1982247435 @default.
- W174931039 hasRelatedWork W2007930705 @default.
- W174931039 hasRelatedWork W2061291988 @default.
- W174931039 hasRelatedWork W2086809639 @default.
- W174931039 hasRelatedWork W2099262636 @default.
- W174931039 hasRelatedWork W2105094167 @default.
- W174931039 hasRelatedWork W2481245932 @default.
- W174931039 hasRelatedWork W249051770 @default.
- W174931039 hasRelatedWork W2558038986 @default.
- W174931039 hasRelatedWork W2592251127 @default.
- W174931039 hasRelatedWork W2767801498 @default.
- W174931039 hasRelatedWork W2920908498 @default.
- W174931039 hasRelatedWork W2961589708 @default.
- W174931039 hasRelatedWork W3092784026 @default.
- W174931039 hasRelatedWork W3107430741 @default.
- W174931039 hasRelatedWork W3199623630 @default.
- W174931039 hasRelatedWork W1607876386 @default.
- W174931039 isParatext "false" @default.
- W174931039 isRetracted "false" @default.
- W174931039 magId "174931039" @default.
- W174931039 workType "article" @default.