Matches in SemOpenAlex for { <https://semopenalex.org/work/W1749593451> ?p ?o ?g. }
- W1749593451 abstract "Abstract : In many machine learning problems and application domains, the data are naturally organized by groups. For example, a video sequence is a group of images, an image is a group of patches, a document is a group of paragraphs/words, and a community is a group of people. We call them the collective data. In this thesis, we study how and what we can learn from collective data. Usually machine learning focuses on individual objects, each of which is described by a feature vector and studied as a point in some metric space. When approaching collective data researchers often reduce the groups into vectors to which traditional methods can be applied. We, on the other hand, will try to develop machine learning methods that respect the collective nature of data and learn from them directly. Several different approaches were taken to address this learning problem. When the groups consist of unordered discrete data points, it can naturally be characterized by its sufficient statistics ? the histogram. For this case we develop efficient methods to address the outliers and temporal effects in the data based on matrix and tensor factorization methods. To learn from groups that contain multi-dimensional real-valued vectors, we develop both generative methods based on hierarchical probabilistic models and discriminative methods using group kernels based on new divergence estimators. With these tools, we can accomplish various tasks such as classification, regression, clustering anomaly detection, and dimensionality reduction on collective data. We further consider the practical side of the divergence based algorithms. To reduce their time and space requirements, we evaluate and find methods that can effectively reduce the size of the groups with little impact on the accuracy. We also proposed the conditional divergence along with an efficient estimator in order to correct the sampling biases that might be present in the data." @default.
- W1749593451 created "2016-06-24" @default.
- W1749593451 creator A5066703386 @default.
- W1749593451 date "2013-12-01" @default.
- W1749593451 modified "2023-09-24" @default.
- W1749593451 title "On Learning from Collective Data" @default.
- W1749593451 cites W121168560 @default.
- W1749593451 cites W1484228140 @default.
- W1749593451 cites W1511103935 @default.
- W1749593451 cites W1513013675 @default.
- W1749593451 cites W1535599202 @default.
- W1749593451 cites W1536734652 @default.
- W1749593451 cites W1560724230 @default.
- W1749593451 cites W1566135517 @default.
- W1749593451 cites W1585529040 @default.
- W1749593451 cites W1587559447 @default.
- W1749593451 cites W1598534305 @default.
- W1749593451 cites W1605715241 @default.
- W1749593451 cites W1634005169 @default.
- W1749593451 cites W1746819321 @default.
- W1749593451 cites W1816257748 @default.
- W1749593451 cites W1861597095 @default.
- W1749593451 cites W1871180460 @default.
- W1749593451 cites W1880262756 @default.
- W1749593451 cites W1897767665 @default.
- W1749593451 cites W190008395 @default.
- W1749593451 cites W1901583629 @default.
- W1749593451 cites W1902027874 @default.
- W1749593451 cites W1946137962 @default.
- W1749593451 cites W1968677218 @default.
- W1749593451 cites W1976618413 @default.
- W1749593451 cites W1976632974 @default.
- W1749593451 cites W1979486458 @default.
- W1749593451 cites W1981050900 @default.
- W1749593451 cites W1982366717 @default.
- W1749593451 cites W1985093013 @default.
- W1749593451 cites W1985615910 @default.
- W1749593451 cites W199156503 @default.
- W1749593451 cites W1994389483 @default.
- W1749593451 cites W1995686259 @default.
- W1749593451 cites W1997817781 @default.
- W1749593451 cites W1998729945 @default.
- W1749593451 cites W2000355138 @default.
- W1749593451 cites W2004026774 @default.
- W1749593451 cites W2004543017 @default.
- W1749593451 cites W2011359124 @default.
- W1749593451 cites W2015904699 @default.
- W1749593451 cites W2017823450 @default.
- W1749593451 cites W2020999234 @default.
- W1749593451 cites W2024165284 @default.
- W1749593451 cites W2028943333 @default.
- W1749593451 cites W2030848960 @default.
- W1749593451 cites W2034368206 @default.
- W1749593451 cites W2034518400 @default.
- W1749593451 cites W2045983409 @default.
- W1749593451 cites W2046033161 @default.
- W1749593451 cites W2050341350 @default.
- W1749593451 cites W2050913223 @default.
- W1749593451 cites W2051203581 @default.
- W1749593451 cites W2056760934 @default.
- W1749593451 cites W2066941820 @default.
- W1749593451 cites W2067191022 @default.
- W1749593451 cites W2080320419 @default.
- W1749593451 cites W2082609669 @default.
- W1749593451 cites W2083875149 @default.
- W1749593451 cites W2084439502 @default.
- W1749593451 cites W2087615914 @default.
- W1749593451 cites W2091560152 @default.
- W1749593451 cites W2098770944 @default.
- W1749593451 cites W2099253838 @default.
- W1749593451 cites W2101087387 @default.
- W1749593451 cites W2101117936 @default.
- W1749593451 cites W2101191125 @default.
- W1749593451 cites W2101778102 @default.
- W1749593451 cites W2104978738 @default.
- W1749593451 cites W2105510466 @default.
- W1749593451 cites W2105608756 @default.
- W1749593451 cites W2106159958 @default.
- W1749593451 cites W2106490775 @default.
- W1749593451 cites W2106589580 @default.
- W1749593451 cites W2107034620 @default.
- W1749593451 cites W2107743791 @default.
- W1749593451 cites W2108598243 @default.
- W1749593451 cites W2112050062 @default.
- W1749593451 cites W2112074816 @default.
- W1749593451 cites W2112483442 @default.
- W1749593451 cites W2113271473 @default.
- W1749593451 cites W2118190603 @default.
- W1749593451 cites W2120580172 @default.
- W1749593451 cites W2122646361 @default.
- W1749593451 cites W2122861381 @default.
- W1749593451 cites W2124228533 @default.
- W1749593451 cites W2125574651 @default.
- W1749593451 cites W2125865219 @default.
- W1749593451 cites W2132870739 @default.
- W1749593451 cites W2134296096 @default.
- W1749593451 cites W2134332047 @default.
- W1749593451 cites W2134692386 @default.
- W1749593451 cites W2137245235 @default.
- W1749593451 cites W2137557016 @default.