Matches in SemOpenAlex for { <https://semopenalex.org/work/W174961330> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W174961330 abstract "Many algorithms and applications involve repeatedly solving a variation of the same statistical inference problem. Adaptive inference is a technique where the previous computations are leveraged to speed up the computations after modifying the model parameters. This approach is useful in situations where a time-consuming statistical inference procedure needs to be re-run after some minor manual changes or in situations where the model is changing over time in minor ways. For example while studying the effects of mutations on proteins, one often constructs models that change slowly as mutations are introduced. Another important application of adaptive inference is in situations where the model is being used iteratively; for example in approximate inference we may want to decompose the problem into simpler inference subproblems that are solved repeatedly and iteratively using adaptive updates. In this thesis we explore both exact inference and iterative approximate inference approaches using adaptive updates. We first present algorithms for adaptive exact inference on general graphs that can be used to efficiently compute marginals and update MAP configurations under arbitrary changes to the input factor graph and its associated elimination tree. We then apply our algorithms to approximate inference using a framework called dual decomposition. The key to our approach is a linear time preprocessing step which builds a data structure called a cluster tree that can efficiently be maintained when the underlying model is slightly modified. We demonstrate how a cluster tree can be used to compute any marginal in time that is logarithmic in the size of the input model. Moreover, our approach can also be used to update MAP configurations in time that is roughly proportional to the number of updated entries, rather than the size of the input model. This fact enables us to use our framework to speed up the convergence of dual-decomposition methods. Our technique is also amenable to parallelism, and we explore its ability to use multi-core parallelism in the context of dual-decomposition approximation methods. The research is performed in collaboration with U. A. Acar, A. T. Ihler, and R. R. Mettu." @default.
- W174961330 created "2016-06-24" @default.
- W174961330 creator A5014978503 @default.
- W174961330 creator A5015051107 @default.
- W174961330 creator A5090398400 @default.
- W174961330 date "2012-01-01" @default.
- W174961330 modified "2023-10-18" @default.
- W174961330 title "Adaptive inference for graphical models" @default.
- W174961330 hasPublicationYear "2012" @default.
- W174961330 type Work @default.
- W174961330 sameAs 174961330 @default.
- W174961330 citedByCount "0" @default.
- W174961330 crossrefType "journal-article" @default.
- W174961330 hasAuthorship W174961330A5014978503 @default.
- W174961330 hasAuthorship W174961330A5015051107 @default.
- W174961330 hasAuthorship W174961330A5090398400 @default.
- W174961330 hasConcept C105795698 @default.
- W174961330 hasConcept C113174947 @default.
- W174961330 hasConcept C11413529 @default.
- W174961330 hasConcept C134261354 @default.
- W174961330 hasConcept C134306372 @default.
- W174961330 hasConcept C154945302 @default.
- W174961330 hasConcept C169272836 @default.
- W174961330 hasConcept C2776214188 @default.
- W174961330 hasConcept C2777472644 @default.
- W174961330 hasConcept C33923547 @default.
- W174961330 hasConcept C39927690 @default.
- W174961330 hasConcept C41008148 @default.
- W174961330 hasConcept C80444323 @default.
- W174961330 hasConceptScore W174961330C105795698 @default.
- W174961330 hasConceptScore W174961330C113174947 @default.
- W174961330 hasConceptScore W174961330C11413529 @default.
- W174961330 hasConceptScore W174961330C134261354 @default.
- W174961330 hasConceptScore W174961330C134306372 @default.
- W174961330 hasConceptScore W174961330C154945302 @default.
- W174961330 hasConceptScore W174961330C169272836 @default.
- W174961330 hasConceptScore W174961330C2776214188 @default.
- W174961330 hasConceptScore W174961330C2777472644 @default.
- W174961330 hasConceptScore W174961330C33923547 @default.
- W174961330 hasConceptScore W174961330C39927690 @default.
- W174961330 hasConceptScore W174961330C41008148 @default.
- W174961330 hasConceptScore W174961330C80444323 @default.
- W174961330 hasLocation W1749613301 @default.
- W174961330 hasOpenAccess W174961330 @default.
- W174961330 hasPrimaryLocation W1749613301 @default.
- W174961330 hasRelatedWork W1631483227 @default.
- W174961330 hasRelatedWork W1760941220 @default.
- W174961330 hasRelatedWork W1846199910 @default.
- W174961330 hasRelatedWork W2068176821 @default.
- W174961330 hasRelatedWork W2070797946 @default.
- W174961330 hasRelatedWork W2212302534 @default.
- W174961330 hasRelatedWork W2406488743 @default.
- W174961330 hasRelatedWork W2468625129 @default.
- W174961330 hasRelatedWork W2563338646 @default.
- W174961330 hasRelatedWork W2599969863 @default.
- W174961330 hasRelatedWork W2903958360 @default.
- W174961330 hasRelatedWork W2949438331 @default.
- W174961330 hasRelatedWork W2952922882 @default.
- W174961330 hasRelatedWork W2980307224 @default.
- W174961330 hasRelatedWork W3014266848 @default.
- W174961330 hasRelatedWork W3037463875 @default.
- W174961330 hasRelatedWork W3107609871 @default.
- W174961330 hasRelatedWork W3127057217 @default.
- W174961330 hasRelatedWork W3174415038 @default.
- W174961330 hasRelatedWork W2882052894 @default.
- W174961330 isParatext "false" @default.
- W174961330 isRetracted "false" @default.
- W174961330 magId "174961330" @default.
- W174961330 workType "article" @default.