Matches in SemOpenAlex for { <https://semopenalex.org/work/W1749851208> ?p ?o ?g. }
- W1749851208 endingPage "5182" @default.
- W1749851208 startingPage "5168" @default.
- W1749851208 abstract "[1] We address the growing need for accurate water temperature predictions in regulated rivers to inform decision support systems and protect aquatic habitats. Although many suitable river temperature models exist, few simultaneously model water temperature dynamics while considering uncertainty of predictions and assimilating observations. Here, we employ a stochastic dynamics approach to water temperature modeling that estimates both the water temperature state and its uncertainty by propagating error through a physically based dynamical system. This method involves converting the governing hydrodynamic and heat transport equations into a state space form and assimilating observations via the Kalman Filter. This model, called the River Assessment for Forecasting Temperature (RAFT), closes the heat budget by tracking heat movement using a robust semi-Lagrangian numerical scheme. RAFT considers key thermodynamic processes, including advection, longitudinal dispersion, atmospheric heat fluxes, lateral inflows, streambed heat exchange, and unsteady nonuniform flow. Inputs include gridded meteorological forecasts from a numerical weather prediction model, bathymetric cross-sectional geometry, and temperature and flow measurements at the upstream boundary and tributaries. We applied RAFT to an ∼100 km portion of the Sacramento River in California, downstream of Keswick Dam (a regulatory dam below Shasta Dam), at a spatial resolution of 2 km and a temporal resolution of 15 min. Model prediction error over a 6 month calibration period was on the order of 0.5°C. When temperature and flow gage data were assimilated, the mean prediction error was significantly less (0.25°C). The model accurately predicts the magnitude and timing of diel temperature fluctuations and can provide 72 h water temperature forecasts when linked with meteorological forecasts and real-time flow/temperature monitoring networks. RAFT is potentially scalable to model and forecast fine-grained one-dimensional temperature dynamics covering a broad extent in a variety of regulated rivers provided that adequate input data are available." @default.
- W1749851208 created "2016-06-24" @default.
- W1749851208 creator A5006967405 @default.
- W1749851208 creator A5008308301 @default.
- W1749851208 creator A5015052303 @default.
- W1749851208 creator A5015581381 @default.
- W1749851208 creator A5023725044 @default.
- W1749851208 creator A5025635906 @default.
- W1749851208 creator A5051237123 @default.
- W1749851208 date "2013-09-01" @default.
- W1749851208 modified "2023-10-10" @default.
- W1749851208 title "Forecasting river temperatures in real time using a stochastic dynamics approach" @default.
- W1749851208 cites W1484164972 @default.
- W1749851208 cites W1522255905 @default.
- W1749851208 cites W1589473324 @default.
- W1749851208 cites W1653007843 @default.
- W1749851208 cites W1860093990 @default.
- W1749851208 cites W1881414996 @default.
- W1749851208 cites W1895164393 @default.
- W1749851208 cites W1971464362 @default.
- W1749851208 cites W1973086100 @default.
- W1749851208 cites W1982151112 @default.
- W1749851208 cites W1983083280 @default.
- W1749851208 cites W1984675661 @default.
- W1749851208 cites W1987161776 @default.
- W1749851208 cites W1989623010 @default.
- W1749851208 cites W2003038288 @default.
- W1749851208 cites W2019346342 @default.
- W1749851208 cites W2021638339 @default.
- W1749851208 cites W2040883578 @default.
- W1749851208 cites W2050271121 @default.
- W1749851208 cites W2051438818 @default.
- W1749851208 cites W2067843160 @default.
- W1749851208 cites W2069529316 @default.
- W1749851208 cites W2078621841 @default.
- W1749851208 cites W2082055300 @default.
- W1749851208 cites W2089826718 @default.
- W1749851208 cites W2090051330 @default.
- W1749851208 cites W2091040157 @default.
- W1749851208 cites W2091828494 @default.
- W1749851208 cites W2093810985 @default.
- W1749851208 cites W2094603693 @default.
- W1749851208 cites W2095679033 @default.
- W1749851208 cites W2096252458 @default.
- W1749851208 cites W2098920641 @default.
- W1749851208 cites W2101075721 @default.
- W1749851208 cites W2117356969 @default.
- W1749851208 cites W2118062020 @default.
- W1749851208 cites W2118864099 @default.
- W1749851208 cites W2127401844 @default.
- W1749851208 cites W2128188514 @default.
- W1749851208 cites W2134229141 @default.
- W1749851208 cites W2140861556 @default.
- W1749851208 cites W2141440834 @default.
- W1749851208 cites W2151721880 @default.
- W1749851208 cites W2155384629 @default.
- W1749851208 cites W2158912317 @default.
- W1749851208 cites W2166473537 @default.
- W1749851208 cites W2166809604 @default.
- W1749851208 cites W2168313526 @default.
- W1749851208 cites W2169154931 @default.
- W1749851208 cites W2170099769 @default.
- W1749851208 cites W4233303705 @default.
- W1749851208 doi "https://doi.org/10.1002/wrcr.20389" @default.
- W1749851208 hasPublicationYear "2013" @default.
- W1749851208 type Work @default.
- W1749851208 sameAs 1749851208 @default.
- W1749851208 citedByCount "61" @default.
- W1749851208 countsByYear W17498512082014 @default.
- W1749851208 countsByYear W17498512082015 @default.
- W1749851208 countsByYear W17498512082016 @default.
- W1749851208 countsByYear W17498512082017 @default.
- W1749851208 countsByYear W17498512082018 @default.
- W1749851208 countsByYear W17498512082019 @default.
- W1749851208 countsByYear W17498512082020 @default.
- W1749851208 countsByYear W17498512082021 @default.
- W1749851208 countsByYear W17498512082022 @default.
- W1749851208 countsByYear W17498512082023 @default.
- W1749851208 crossrefType "journal-article" @default.
- W1749851208 hasAuthorship W1749851208A5006967405 @default.
- W1749851208 hasAuthorship W1749851208A5008308301 @default.
- W1749851208 hasAuthorship W1749851208A5015052303 @default.
- W1749851208 hasAuthorship W1749851208A5015581381 @default.
- W1749851208 hasAuthorship W1749851208A5023725044 @default.
- W1749851208 hasAuthorship W1749851208A5025635906 @default.
- W1749851208 hasAuthorship W1749851208A5051237123 @default.
- W1749851208 hasConcept C121332964 @default.
- W1749851208 hasConcept C121864883 @default.
- W1749851208 hasConcept C127313418 @default.
- W1749851208 hasConcept C145912823 @default.
- W1749851208 hasConcept C149782125 @default.
- W1749851208 hasConcept C153294291 @default.
- W1749851208 hasConcept C187320778 @default.
- W1749851208 hasConcept C205649164 @default.
- W1749851208 hasConcept C24890656 @default.
- W1749851208 hasConcept C2984125019 @default.
- W1749851208 hasConcept C33923547 @default.
- W1749851208 hasConcept C39432304 @default.