Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750249149> ?p ?o ?g. }
- W1750249149 abstract "In this thesis we focus on Stochastic combinatorial Optimization Problems (SCOPs), a wide class of combinatorial optimization problems under uncertainty, where part of the information about the problem data is unknown at the planning stage, but some knowledge about its probability distribution is assumed.Optimization problems under uncertainty are complex and difficult, and often classical algorithmic approaches based on mathematical and dynamic programming are able to solve only very small problem instances. For this reason, in recent years metaheuristic algorithms such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others, are emerging as successful alternatives to classical approaches.In this thesis, metaheuristics that have been applied so far to SCOPs are introduced and the related literature is thoroughly reviewed. In particular, two properties of metaheuristics emerge from the survey: they are a valid alternative to exact classical methods for addressing real-sized SCOPs, and they are flexible, since they can be quite easily adapted to solve different SCOPs formulations, both static and dynamic. On the base of the current literature, we identify the following as the key open issues in solving SCOPs via metaheuristics: (1) the design and integration of ad hoc, fast and effective objective function approximations inside the optimization algorithm;(2) the estimation of the objective function by sampling when no closed-form expression for the objective function is available, and the study of methods to reduce the time complexity and noise inherent to this type of estimation;(3) the characterization of the efficiency of metaheuristic variants with respect to different levels of stochasticity in the problem instances. We investigate the above issues by focusing in particular on a SCOP belonging to the class of vehicle routing problems: the Probabilistic Traveling Salesman Problem (PTSP). For the PTSP, we consider the Ant Colony Optimization metaheuristic and we design efficient local search algorithms that can enhance its performance. We obtain state-of-the-art algorithms, but we show that they are effective only for instances above a certain level of stochasticity, otherwise it is more convenient to solve the problem as if it were deterministic.The algorithmic variants based on an estimation of the objective function by sampling obtain worse results, but qualitatively have the same behavior of the algorithms based on the exact objective function, with respect to the level of stochasticity. Moreover, we show that the performance of algorithmic variants based on ad hoc approximations is strongly correlated with the absolute error of the approximation, and that the effect on local search of ad hoc approximations can be very degrading.Finally, we briefly address another SCOP belonging to the class of vehicle routing problems: the Vehicle Routing Problem with Stochastic Demands (VRPSD). For this problem, we have implemented and tested several metaheuristics, and we have studied the impact of integrating in them different ad hoc approximations." @default.
- W1750249149 created "2016-06-24" @default.
- W1750249149 creator A5004686529 @default.
- W1750249149 creator A5024091899 @default.
- W1750249149 date "2006-06-29" @default.
- W1750249149 modified "2023-09-26" @default.
- W1750249149 title "Ant colony optimization and local search for the probabilistic traveling salesman problem: a case study in stochastic combinatorial optimization" @default.
- W1750249149 cites W103650626 @default.
- W1750249149 cites W1487312389 @default.
- W1750249149 cites W1497256448 @default.
- W1750249149 cites W1500165591 @default.
- W1750249149 cites W1503883796 @default.
- W1750249149 cites W1505258598 @default.
- W1750249149 cites W1506300983 @default.
- W1750249149 cites W1514588745 @default.
- W1750249149 cites W1514875444 @default.
- W1750249149 cites W1552828154 @default.
- W1750249149 cites W1559582792 @default.
- W1750249149 cites W1559839959 @default.
- W1750249149 cites W1560687246 @default.
- W1750249149 cites W1568161011 @default.
- W1750249149 cites W1569990960 @default.
- W1750249149 cites W1571087346 @default.
- W1750249149 cites W1573676079 @default.
- W1750249149 cites W1576452626 @default.
- W1750249149 cites W1576498301 @default.
- W1750249149 cites W1578484091 @default.
- W1750249149 cites W1578699850 @default.
- W1750249149 cites W158123262 @default.
- W1750249149 cites W1586395524 @default.
- W1750249149 cites W1586645187 @default.
- W1750249149 cites W1598952354 @default.
- W1750249149 cites W1606802486 @default.
- W1750249149 cites W1659703095 @default.
- W1750249149 cites W1813153225 @default.
- W1750249149 cites W1832301857 @default.
- W1750249149 cites W1841728366 @default.
- W1750249149 cites W1879570979 @default.
- W1750249149 cites W1893841940 @default.
- W1750249149 cites W1947179618 @default.
- W1750249149 cites W1951492988 @default.
- W1750249149 cites W1963888335 @default.
- W1750249149 cites W1964187450 @default.
- W1750249149 cites W1966197373 @default.
- W1750249149 cites W1967331190 @default.
- W1750249149 cites W1969007958 @default.
- W1750249149 cites W1973220928 @default.
- W1750249149 cites W1976625337 @default.
- W1750249149 cites W1981490227 @default.
- W1750249149 cites W1984143531 @default.
- W1750249149 cites W1985259749 @default.
- W1750249149 cites W1988407907 @default.
- W1750249149 cites W1993131108 @default.
- W1750249149 cites W1996908848 @default.
- W1750249149 cites W1998707332 @default.
- W1750249149 cites W2004572554 @default.
- W1750249149 cites W2004959510 @default.
- W1750249149 cites W2005228957 @default.
- W1750249149 cites W2005470065 @default.
- W1750249149 cites W2009543464 @default.
- W1750249149 cites W2012451526 @default.
- W1750249149 cites W2014946907 @default.
- W1750249149 cites W2017066479 @default.
- W1750249149 cites W2017411673 @default.
- W1750249149 cites W2017530399 @default.
- W1750249149 cites W2017938154 @default.
- W1750249149 cites W2018640006 @default.
- W1750249149 cites W2020589416 @default.
- W1750249149 cites W2020999234 @default.
- W1750249149 cites W2024060531 @default.
- W1750249149 cites W2025929892 @default.
- W1750249149 cites W2026065468 @default.
- W1750249149 cites W2027311549 @default.
- W1750249149 cites W2027954882 @default.
- W1750249149 cites W2028061137 @default.
- W1750249149 cites W2028335093 @default.
- W1750249149 cites W2031796417 @default.
- W1750249149 cites W2032015314 @default.
- W1750249149 cites W2033563160 @default.
- W1750249149 cites W2040309077 @default.
- W1750249149 cites W2041357886 @default.
- W1750249149 cites W2042154295 @default.
- W1750249149 cites W2047612779 @default.
- W1750249149 cites W2048861917 @default.
- W1750249149 cites W2048910294 @default.
- W1750249149 cites W2052036673 @default.
- W1750249149 cites W2055747860 @default.
- W1750249149 cites W2056760934 @default.
- W1750249149 cites W2064568071 @default.
- W1750249149 cites W2065335627 @default.
- W1750249149 cites W2070093042 @default.
- W1750249149 cites W2070878875 @default.
- W1750249149 cites W2073643731 @default.
- W1750249149 cites W2075795262 @default.
- W1750249149 cites W2078848072 @default.
- W1750249149 cites W20809664 @default.
- W1750249149 cites W2084792706 @default.
- W1750249149 cites W2085495522 @default.
- W1750249149 cites W2085952738 @default.
- W1750249149 cites W2091312325 @default.