Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750360268> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1750360268 endingPage "123" @default.
- W1750360268 startingPage "106" @default.
- W1750360268 abstract "Many applications of computational biology require a variable selection procedure to sift through a large number of input variables and select some smaller number that influence a target variable of interest. For example, in virology, only some small number of viral protein fragments influence the nature of the immune response during viral infection. Due to the large number of variables to be considered, a brute-force search for the subset of variables is in general intractable. To approximate this, methods based on ℓ1-regularized linear regression have been proposed and have been found to be particularly successful. It is well understood however that such methods fail to choose the correct subset of variables if these are highly correlated with other ”decoy” variables. We present a method for sifting through sets of highly correlated variables which leads to higher accuracy in selecting the correct variables. The main innovation is a filtering step that reduces correlations among variables to be selected, making the ℓ1-regularization effective for datasets on which many methods for variable selection fail. The filtering step changes both the values of the predictor variables and output values by projections onto components obtained through a computationally-inexpensive principal components analysis. In this paper we demonstrate the usefulness of our method on synthetic datasets and on novel applications in virology. These include HIV viral load analysis based on patients’ HIV sequences and immune types, as well as the analysis of seasonal variation in influenza death rates based on the regions of the influenza genome that undergo diversifying selection in the previous season." @default.
- W1750360268 created "2016-06-24" @default.
- W1750360268 creator A5000885491 @default.
- W1750360268 creator A5065884752 @default.
- W1750360268 date "2011-01-01" @default.
- W1750360268 modified "2023-09-23" @default.
- W1750360268 title "Variable Selection through Correlation Sifting" @default.
- W1750360268 cites W1988533731 @default.
- W1750360268 cites W1990180184 @default.
- W1750360268 cites W1997840761 @default.
- W1750360268 cites W2006556166 @default.
- W1750360268 cites W2016277870 @default.
- W1750360268 cites W2020925091 @default.
- W1750360268 cites W2063485002 @default.
- W1750360268 cites W2063978378 @default.
- W1750360268 cites W2077480262 @default.
- W1750360268 cites W2088204382 @default.
- W1750360268 cites W2092500478 @default.
- W1750360268 cites W2111391629 @default.
- W1750360268 cites W2117918599 @default.
- W1750360268 cites W2118267313 @default.
- W1750360268 cites W2122825543 @default.
- W1750360268 cites W2126531896 @default.
- W1750360268 cites W2146291971 @default.
- W1750360268 cites W2166374206 @default.
- W1750360268 cites W2171688797 @default.
- W1750360268 doi "https://doi.org/10.1007/978-3-642-20036-6_12" @default.
- W1750360268 hasPublicationYear "2011" @default.
- W1750360268 type Work @default.
- W1750360268 sameAs 1750360268 @default.
- W1750360268 citedByCount "14" @default.
- W1750360268 countsByYear W17503602682013 @default.
- W1750360268 countsByYear W17503602682014 @default.
- W1750360268 countsByYear W17503602682015 @default.
- W1750360268 countsByYear W17503602682017 @default.
- W1750360268 countsByYear W17503602682018 @default.
- W1750360268 countsByYear W17503602682019 @default.
- W1750360268 crossrefType "book-chapter" @default.
- W1750360268 hasAuthorship W1750360268A5000885491 @default.
- W1750360268 hasAuthorship W1750360268A5065884752 @default.
- W1750360268 hasConcept C105795698 @default.
- W1750360268 hasConcept C134306372 @default.
- W1750360268 hasConcept C148483581 @default.
- W1750360268 hasConcept C154945302 @default.
- W1750360268 hasConcept C182365436 @default.
- W1750360268 hasConcept C27574286 @default.
- W1750360268 hasConcept C33923547 @default.
- W1750360268 hasConcept C41008148 @default.
- W1750360268 hasConceptScore W1750360268C105795698 @default.
- W1750360268 hasConceptScore W1750360268C134306372 @default.
- W1750360268 hasConceptScore W1750360268C148483581 @default.
- W1750360268 hasConceptScore W1750360268C154945302 @default.
- W1750360268 hasConceptScore W1750360268C182365436 @default.
- W1750360268 hasConceptScore W1750360268C27574286 @default.
- W1750360268 hasConceptScore W1750360268C33923547 @default.
- W1750360268 hasConceptScore W1750360268C41008148 @default.
- W1750360268 hasLocation W17503602681 @default.
- W1750360268 hasOpenAccess W1750360268 @default.
- W1750360268 hasPrimaryLocation W17503602681 @default.
- W1750360268 hasRelatedWork W2035449019 @default.
- W1750360268 hasRelatedWork W2119158312 @default.
- W1750360268 hasRelatedWork W2131193147 @default.
- W1750360268 hasRelatedWork W2140087070 @default.
- W1750360268 hasRelatedWork W2294592634 @default.
- W1750360268 hasRelatedWork W2312542324 @default.
- W1750360268 hasRelatedWork W2552050053 @default.
- W1750360268 hasRelatedWork W2973865103 @default.
- W1750360268 hasRelatedWork W2395662765 @default.
- W1750360268 hasRelatedWork W3122549649 @default.
- W1750360268 isParatext "false" @default.
- W1750360268 isRetracted "false" @default.
- W1750360268 magId "1750360268" @default.
- W1750360268 workType "book-chapter" @default.