Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750376204> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1750376204 endingPage "88" @default.
- W1750376204 startingPage "72" @default.
- W1750376204 abstract "In this paper, we study the statistical theory of shape for ordered finite point configurations, or otherwise stated, the uncertainty of geometric invariants. Such studies have been made for affine invariants in e.g. [GHJ92], [Wer93], where in the former case a bound on errors are used instead of errors described by density functions, and in the latter case a first order approximation gives an ellipsis as uncertainty region. Here, a general approach for defining shape and finding its density, expressed in the densities for the individual points, is developed. No approximations are made, resulting in an exact expression of the uncertainty region. Similar results have been obtained for the special case of the density of the cross ratio, see [May95,åst96]. In particular, we will concentrate on the affine shape, where often analytical computations are possible. In this case confidence intervals for invariants can be obtained from a priori assumptions on the densities of the detected points in the images. However, the theory is completely general and can be used to compute the density of any invariant (Euclidean, similarity, projective etc.) from arbitrary densities of the individual points. These confidence intervals can be used in such applications as geometrical hashing, recognition of ordered point configurations and error analysis of reconstruction algorithms. Another approach towards this problem, in the case of similarity transformations, can be found in [Ken89]. For the special case of normally distributed feature points in a plane and similarity transformations, see [BOO86], [MD89]. Finally, an example will be given, illustrating an application of the theory for the problem of recognising planar point configurations from images taken by an affine camera. This case is of particular importance in applications, where details on a conveyor belt are captured by a camera, with image plane parallel to the conveyor belt and extracted feature points from the images are used to sort the objects." @default.
- W1750376204 created "2016-06-24" @default.
- W1750376204 creator A5068898822 @default.
- W1750376204 creator A5069875065 @default.
- W1750376204 date "1998-01-01" @default.
- W1750376204 modified "2023-09-25" @default.
- W1750376204 title "Recognition of planar point configurations using the density of affine shape" @default.
- W1750376204 cites W1735413976 @default.
- W1750376204 cites W1981198419 @default.
- W1750376204 cites W1986442311 @default.
- W1750376204 cites W2007938835 @default.
- W1750376204 cites W2013113861 @default.
- W1750376204 cites W2025160417 @default.
- W1750376204 cites W2061700871 @default.
- W1750376204 cites W4252149683 @default.
- W1750376204 doi "https://doi.org/10.1007/bfb0055660" @default.
- W1750376204 hasPublicationYear "1998" @default.
- W1750376204 type Work @default.
- W1750376204 sameAs 1750376204 @default.
- W1750376204 citedByCount "4" @default.
- W1750376204 crossrefType "book-chapter" @default.
- W1750376204 hasAuthorship W1750376204A5068898822 @default.
- W1750376204 hasAuthorship W1750376204A5069875065 @default.
- W1750376204 hasBestOaLocation W17503762041 @default.
- W1750376204 hasConcept C103278499 @default.
- W1750376204 hasConcept C111472728 @default.
- W1750376204 hasConcept C11413529 @default.
- W1750376204 hasConcept C115961682 @default.
- W1750376204 hasConcept C129782007 @default.
- W1750376204 hasConcept C138885662 @default.
- W1750376204 hasConcept C154945302 @default.
- W1750376204 hasConcept C190470478 @default.
- W1750376204 hasConcept C202444582 @default.
- W1750376204 hasConcept C2524010 @default.
- W1750376204 hasConcept C28719098 @default.
- W1750376204 hasConcept C33923547 @default.
- W1750376204 hasConcept C37914503 @default.
- W1750376204 hasConcept C41008148 @default.
- W1750376204 hasConcept C45374587 @default.
- W1750376204 hasConcept C75553542 @default.
- W1750376204 hasConcept C92757383 @default.
- W1750376204 hasConceptScore W1750376204C103278499 @default.
- W1750376204 hasConceptScore W1750376204C111472728 @default.
- W1750376204 hasConceptScore W1750376204C11413529 @default.
- W1750376204 hasConceptScore W1750376204C115961682 @default.
- W1750376204 hasConceptScore W1750376204C129782007 @default.
- W1750376204 hasConceptScore W1750376204C138885662 @default.
- W1750376204 hasConceptScore W1750376204C154945302 @default.
- W1750376204 hasConceptScore W1750376204C190470478 @default.
- W1750376204 hasConceptScore W1750376204C202444582 @default.
- W1750376204 hasConceptScore W1750376204C2524010 @default.
- W1750376204 hasConceptScore W1750376204C28719098 @default.
- W1750376204 hasConceptScore W1750376204C33923547 @default.
- W1750376204 hasConceptScore W1750376204C37914503 @default.
- W1750376204 hasConceptScore W1750376204C41008148 @default.
- W1750376204 hasConceptScore W1750376204C45374587 @default.
- W1750376204 hasConceptScore W1750376204C75553542 @default.
- W1750376204 hasConceptScore W1750376204C92757383 @default.
- W1750376204 hasLocation W17503762041 @default.
- W1750376204 hasOpenAccess W1750376204 @default.
- W1750376204 hasPrimaryLocation W17503762041 @default.
- W1750376204 hasRelatedWork W1828744063 @default.
- W1750376204 hasRelatedWork W1974376592 @default.
- W1750376204 hasRelatedWork W2002850650 @default.
- W1750376204 hasRelatedWork W2086077945 @default.
- W1750376204 hasRelatedWork W2146707071 @default.
- W1750376204 hasRelatedWork W2606992614 @default.
- W1750376204 hasRelatedWork W2792164548 @default.
- W1750376204 hasRelatedWork W2950625973 @default.
- W1750376204 hasRelatedWork W2963129756 @default.
- W1750376204 hasRelatedWork W4297686661 @default.
- W1750376204 isParatext "false" @default.
- W1750376204 isRetracted "false" @default.
- W1750376204 magId "1750376204" @default.
- W1750376204 workType "book-chapter" @default.