Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750487523> ?p ?o ?g. }
- W1750487523 endingPage "91" @default.
- W1750487523 startingPage "75" @default.
- W1750487523 abstract "The Sancho Reservoir in SW Spain has been impacted by acid mine drainage (AMD) since the Tharsis mine stopped activity in 1998. As a result, the reservoir exhibits low pH (~ 3.5) and high aqueous concentrations of sulfate, aluminum, iron and trace metals. Thus far, removal of contaminants by sediment burial has not been as effective as expected in improving water quality within the reservoir. To inform potential remediation strategies, a 1-D, non-steady-state reactive transport model with a comprehensive set of equilibrium and kinetic biogeochemical reactions is used to simulate the fate of trace metals and acidity in sediments affected by AMD. Two realizations of the model account for the spatial heterogeneity of bottom water oxygenation. A “permanently oxic” model represents shallow sediments above the thermocline, while a “holomictic” model represents the deeper sediments where bottom water oxygen levels oscillate between completely anoxic and oxic as a result of water-column overturn. The model is calibrated against an extensive dataset on the depth distributions of pore water and solid phase species. Model results imply that, under permanently oxic conditions, the sediments act as a sink for acidity (H+) and aqueous Al, Zn, Cu, Co and Ni, but act as a source of aqueous Mn, Fe and As. The latter are released to the overlying water as a result of Mn and Fe (oxy)hydroxide reductive dissolution in the sediments. Below the thermocline, when bottom waters become anoxic, metal sulfides precipitate in the sediment. When the bottom waters subsequently become oxic, the metal sulfides are oxidized along the downward-penetrating oxygen front and the associated metals are released to the overlying water. On the order of 35% of the sediment pools of sulfide-bound Zn, Cu, Co and Ni, and ~ 25% of FeS are thus reoxidized. However, overall the sediments act as a net sink for the pollutants considered in the model. On an annual basis, about 10% of the total elemental masses of S, Al, Zn and Cu present in the water column of the reservoir are removed by burial in the sediments, but only ~ 2% for Co and Ni. For Fe, Mn and As, the corresponding values are 80, 70 and 98% respectively. The model predicts that, if AMD input to the reservoir were to completely cease, the sediments would reach a new steady state with negligible release of aqueous contaminants to the overlying water column within a few years." @default.
- W1750487523 created "2016-06-24" @default.
- W1750487523 creator A5010009245 @default.
- W1750487523 creator A5010144531 @default.
- W1750487523 creator A5029485726 @default.
- W1750487523 creator A5037707164 @default.
- W1750487523 creator A5061490246 @default.
- W1750487523 creator A5069035943 @default.
- W1750487523 date "2015-12-01" @default.
- W1750487523 modified "2023-09-25" @default.
- W1750487523 title "Reactive transport modeling of early diagenesis in a reservoir lake affected by acid mine drainage: Trace metals, lake overturn, benthic fluxes and remediation" @default.
- W1750487523 cites W1545945312 @default.
- W1750487523 cites W1967911937 @default.
- W1750487523 cites W1968489101 @default.
- W1750487523 cites W1969258229 @default.
- W1750487523 cites W1970064350 @default.
- W1750487523 cites W1975149909 @default.
- W1750487523 cites W1975241938 @default.
- W1750487523 cites W1981502995 @default.
- W1750487523 cites W1982720615 @default.
- W1750487523 cites W1987261718 @default.
- W1750487523 cites W1988186073 @default.
- W1750487523 cites W1993085013 @default.
- W1750487523 cites W2001156023 @default.
- W1750487523 cites W2001614007 @default.
- W1750487523 cites W2005807992 @default.
- W1750487523 cites W2006896335 @default.
- W1750487523 cites W2010100607 @default.
- W1750487523 cites W2010767296 @default.
- W1750487523 cites W2011625428 @default.
- W1750487523 cites W2018936251 @default.
- W1750487523 cites W2025383955 @default.
- W1750487523 cites W2029043161 @default.
- W1750487523 cites W2031199691 @default.
- W1750487523 cites W2042576459 @default.
- W1750487523 cites W2044233272 @default.
- W1750487523 cites W2047988525 @default.
- W1750487523 cites W2048440220 @default.
- W1750487523 cites W2048829317 @default.
- W1750487523 cites W2058409890 @default.
- W1750487523 cites W2067177629 @default.
- W1750487523 cites W2069186965 @default.
- W1750487523 cites W2070758359 @default.
- W1750487523 cites W2073721648 @default.
- W1750487523 cites W2075631061 @default.
- W1750487523 cites W2076885308 @default.
- W1750487523 cites W2085983458 @default.
- W1750487523 cites W2089320030 @default.
- W1750487523 cites W2090179827 @default.
- W1750487523 cites W2090329169 @default.
- W1750487523 cites W2091396980 @default.
- W1750487523 cites W2095542878 @default.
- W1750487523 cites W2103510337 @default.
- W1750487523 cites W2127860693 @default.
- W1750487523 cites W2128963073 @default.
- W1750487523 cites W2133917782 @default.
- W1750487523 cites W2141892377 @default.
- W1750487523 cites W2149273061 @default.
- W1750487523 cites W2149294467 @default.
- W1750487523 cites W2153666145 @default.
- W1750487523 cites W2327660399 @default.
- W1750487523 cites W2334253216 @default.
- W1750487523 doi "https://doi.org/10.1016/j.chemgeo.2015.10.023" @default.
- W1750487523 hasPublicationYear "2015" @default.
- W1750487523 type Work @default.
- W1750487523 sameAs 1750487523 @default.
- W1750487523 citedByCount "26" @default.
- W1750487523 countsByYear W17504875232016 @default.
- W1750487523 countsByYear W17504875232017 @default.
- W1750487523 countsByYear W17504875232018 @default.
- W1750487523 countsByYear W17504875232019 @default.
- W1750487523 countsByYear W17504875232020 @default.
- W1750487523 countsByYear W17504875232021 @default.
- W1750487523 countsByYear W17504875232022 @default.
- W1750487523 countsByYear W17504875232023 @default.
- W1750487523 crossrefType "journal-article" @default.
- W1750487523 hasAuthorship W1750487523A5010009245 @default.
- W1750487523 hasAuthorship W1750487523A5010144531 @default.
- W1750487523 hasAuthorship W1750487523A5029485726 @default.
- W1750487523 hasAuthorship W1750487523A5037707164 @default.
- W1750487523 hasAuthorship W1750487523A5061490246 @default.
- W1750487523 hasAuthorship W1750487523A5069035943 @default.
- W1750487523 hasConcept C105824904 @default.
- W1750487523 hasConcept C107872376 @default.
- W1750487523 hasConcept C108970007 @default.
- W1750487523 hasConcept C111368507 @default.
- W1750487523 hasConcept C112570922 @default.
- W1750487523 hasConcept C114793014 @default.
- W1750487523 hasConcept C122846477 @default.
- W1750487523 hasConcept C127313418 @default.
- W1750487523 hasConcept C130452526 @default.
- W1750487523 hasConcept C143050476 @default.
- W1750487523 hasConcept C17409809 @default.
- W1750487523 hasConcept C178790620 @default.
- W1750487523 hasConcept C185592680 @default.
- W1750487523 hasConcept C187320778 @default.
- W1750487523 hasConcept C18903297 @default.
- W1750487523 hasConcept C205649164 @default.