Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750490368> ?p ?o ?g. }
- W1750490368 endingPage "1052" @default.
- W1750490368 startingPage "1043" @default.
- W1750490368 abstract "The condensation of water vapor is a crucial problem, which might have serious problems, i.e. corrosion of metals and the wash out of protective coating of apparatuses, devices and pneumatic systems. Therefore, the dew point temperature of air at atmospheric pressure should be estimated with the intention of designing and applying the suitable kind of dryer. In the current contribution, two models based on statistical learning theories, i.e. Least Square Support Vector Machine (LSSVM) and Adaptive Neuro Fuzzy Inference System (ANFIS), were developed to predict the dew point temperature of moist air at atmospheric pressure over extensive range of temperature and relative humidity. Moreover, to optimize the corresponding parameters of these models, a Genetic Algorithm (GA) was applied. In this regard, a set of accessible data containing 1300 data points of moist air dew point in the temperature range of 0–50 °C, at a relative humidity up to 100%, and atmospheric pressure has been gathered from the reference. Estimations are found to be in excellent agreement with the reported data. The obtained values of Mean Squared Error (MSE) and R-Square (R2) were 0.000016, 1.0000 and 0.382402, 0.9987 for the LSSVM and ANFIS models respectively. The present tools can be of massive practical value for engineers and researchers as a quick check of the dew points of moist air." @default.
- W1750490368 created "2016-06-24" @default.
- W1750490368 creator A5037602966 @default.
- W1750490368 creator A5050357233 @default.
- W1750490368 creator A5053208030 @default.
- W1750490368 creator A5062925712 @default.
- W1750490368 creator A5070342809 @default.
- W1750490368 creator A5079695703 @default.
- W1750490368 creator A5090175929 @default.
- W1750490368 date "2016-01-01" @default.
- W1750490368 modified "2023-10-01" @default.
- W1750490368 title "Estimation of air dew point temperature using computational intelligence schemes" @default.
- W1750490368 cites W1179140510 @default.
- W1750490368 cites W1971278352 @default.
- W1750490368 cites W1987184679 @default.
- W1750490368 cites W1988210039 @default.
- W1750490368 cites W1990011917 @default.
- W1750490368 cites W1996819993 @default.
- W1750490368 cites W1997342665 @default.
- W1750490368 cites W2004069510 @default.
- W1750490368 cites W2011142156 @default.
- W1750490368 cites W2017868205 @default.
- W1750490368 cites W2024732378 @default.
- W1750490368 cites W2025697666 @default.
- W1750490368 cites W2026233895 @default.
- W1750490368 cites W2030938175 @default.
- W1750490368 cites W2045469795 @default.
- W1750490368 cites W2057564827 @default.
- W1750490368 cites W2071470582 @default.
- W1750490368 cites W2112625433 @default.
- W1750490368 cites W2120802181 @default.
- W1750490368 cites W2133321814 @default.
- W1750490368 cites W2133611648 @default.
- W1750490368 cites W2136226282 @default.
- W1750490368 cites W2150313731 @default.
- W1750490368 cites W4239510810 @default.
- W1750490368 cites W4249173910 @default.
- W1750490368 doi "https://doi.org/10.1016/j.applthermaleng.2015.10.056" @default.
- W1750490368 hasPublicationYear "2016" @default.
- W1750490368 type Work @default.
- W1750490368 sameAs 1750490368 @default.
- W1750490368 citedByCount "112" @default.
- W1750490368 countsByYear W17504903682016 @default.
- W1750490368 countsByYear W17504903682017 @default.
- W1750490368 countsByYear W17504903682018 @default.
- W1750490368 countsByYear W17504903682019 @default.
- W1750490368 countsByYear W17504903682020 @default.
- W1750490368 countsByYear W17504903682021 @default.
- W1750490368 countsByYear W17504903682022 @default.
- W1750490368 countsByYear W17504903682023 @default.
- W1750490368 crossrefType "journal-article" @default.
- W1750490368 hasAuthorship W1750490368A5037602966 @default.
- W1750490368 hasAuthorship W1750490368A5050357233 @default.
- W1750490368 hasAuthorship W1750490368A5053208030 @default.
- W1750490368 hasAuthorship W1750490368A5062925712 @default.
- W1750490368 hasAuthorship W1750490368A5070342809 @default.
- W1750490368 hasAuthorship W1750490368A5079695703 @default.
- W1750490368 hasAuthorship W1750490368A5090175929 @default.
- W1750490368 hasConcept C105795698 @default.
- W1750490368 hasConcept C111538826 @default.
- W1750490368 hasConcept C11413529 @default.
- W1750490368 hasConcept C121332964 @default.
- W1750490368 hasConcept C122383733 @default.
- W1750490368 hasConcept C139945424 @default.
- W1750490368 hasConcept C151420433 @default.
- W1750490368 hasConcept C153294291 @default.
- W1750490368 hasConcept C154945302 @default.
- W1750490368 hasConcept C158960510 @default.
- W1750490368 hasConcept C159985019 @default.
- W1750490368 hasConcept C186108316 @default.
- W1750490368 hasConcept C192562407 @default.
- W1750490368 hasConcept C195975749 @default.
- W1750490368 hasConcept C200093464 @default.
- W1750490368 hasConcept C200239111 @default.
- W1750490368 hasConcept C204323151 @default.
- W1750490368 hasConcept C2524010 @default.
- W1750490368 hasConcept C28719098 @default.
- W1750490368 hasConcept C2983363897 @default.
- W1750490368 hasConcept C33923547 @default.
- W1750490368 hasConcept C39432304 @default.
- W1750490368 hasConcept C41008148 @default.
- W1750490368 hasConcept C58166 @default.
- W1750490368 hasConcept C64900583 @default.
- W1750490368 hasConcept C82210777 @default.
- W1750490368 hasConceptScore W1750490368C105795698 @default.
- W1750490368 hasConceptScore W1750490368C111538826 @default.
- W1750490368 hasConceptScore W1750490368C11413529 @default.
- W1750490368 hasConceptScore W1750490368C121332964 @default.
- W1750490368 hasConceptScore W1750490368C122383733 @default.
- W1750490368 hasConceptScore W1750490368C139945424 @default.
- W1750490368 hasConceptScore W1750490368C151420433 @default.
- W1750490368 hasConceptScore W1750490368C153294291 @default.
- W1750490368 hasConceptScore W1750490368C154945302 @default.
- W1750490368 hasConceptScore W1750490368C158960510 @default.
- W1750490368 hasConceptScore W1750490368C159985019 @default.
- W1750490368 hasConceptScore W1750490368C186108316 @default.
- W1750490368 hasConceptScore W1750490368C192562407 @default.
- W1750490368 hasConceptScore W1750490368C195975749 @default.