Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750536449> ?p ?o ?g. }
- W1750536449 endingPage "1102" @default.
- W1750536449 startingPage "1082" @default.
- W1750536449 abstract "SUMMARY The reliability of model predictions is affected by multiple sources of uncertainty; therefore, most of the efforts for modeling biological systems include a sensitivity analysis step aiming to identify the key contributors to uncertainty. This generates insight about the robustness of the model to variations in environmental conditions, kinetic parameters, initial concentration of the species, or any other source of uncertainty. Local sensitivities measure the robustness of the model to small perturbations on the inputs around their nominal value. There are several numerical methods for the calculation of local sensitivities, but the calculated values should be identical within the numerical accuracy of the method used. In contrast, as will be shown in this contribution, the results of different global sensitivity analysis methods can be very different and highly dependent on the distribution considered for the inputs under evaluation. In this work, derivative‐based global sensitivities are extended to be able to consider an accurate probability density function for the parameters based on the likelihood function. This strategy enforces the areas of the parameter space most likely to reproduce the desired behavior, minimizing the importance of parameter sets with low probability of being optimal to dominate the sensitivity ranking. A model of a biochemical pathway with three enzymatic steps is used here to illustrate the performance of several relevant global sensitivity analysis methods considering different probability density functions for the parameters and revealing important hints about which method and distribution to choose for each type of model and purpose of the analysis. Copyright © 2012 John Wiley & Sons, Ltd." @default.
- W1750536449 created "2016-06-24" @default.
- W1750536449 creator A5022147896 @default.
- W1750536449 creator A5081288689 @default.
- W1750536449 creator A5090264675 @default.
- W1750536449 date "2012-03-06" @default.
- W1750536449 modified "2023-10-18" @default.
- W1750536449 title "Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models" @default.
- W1750536449 cites W1964037688 @default.
- W1750536449 cites W1988540551 @default.
- W1750536449 cites W1997774242 @default.
- W1750536449 cites W2000014382 @default.
- W1750536449 cites W2012638722 @default.
- W1750536449 cites W2021785679 @default.
- W1750536449 cites W2029767409 @default.
- W1750536449 cites W2034183452 @default.
- W1750536449 cites W2035363534 @default.
- W1750536449 cites W2037243764 @default.
- W1750536449 cites W2048478820 @default.
- W1750536449 cites W2049383133 @default.
- W1750536449 cites W2056386860 @default.
- W1750536449 cites W2065359237 @default.
- W1750536449 cites W2087752119 @default.
- W1750536449 cites W2099640019 @default.
- W1750536449 cites W2100286480 @default.
- W1750536449 cites W2101589741 @default.
- W1750536449 cites W2102653059 @default.
- W1750536449 cites W2103838923 @default.
- W1750536449 cites W2105379381 @default.
- W1750536449 cites W2115343689 @default.
- W1750536449 cites W2124630954 @default.
- W1750536449 cites W2139629468 @default.
- W1750536449 cites W2141755357 @default.
- W1750536449 cites W2147388619 @default.
- W1750536449 cites W2151582349 @default.
- W1750536449 cites W2154387393 @default.
- W1750536449 cites W2161304688 @default.
- W1750536449 cites W2165603655 @default.
- W1750536449 cites W2166071821 @default.
- W1750536449 cites W2166565152 @default.
- W1750536449 cites W4241793634 @default.
- W1750536449 cites W999207820 @default.
- W1750536449 doi "https://doi.org/10.1002/rnc.2797" @default.
- W1750536449 hasPublicationYear "2012" @default.
- W1750536449 type Work @default.
- W1750536449 sameAs 1750536449 @default.
- W1750536449 citedByCount "38" @default.
- W1750536449 countsByYear W17505364492012 @default.
- W1750536449 countsByYear W17505364492013 @default.
- W1750536449 countsByYear W17505364492014 @default.
- W1750536449 countsByYear W17505364492015 @default.
- W1750536449 countsByYear W17505364492016 @default.
- W1750536449 countsByYear W17505364492017 @default.
- W1750536449 countsByYear W17505364492018 @default.
- W1750536449 countsByYear W17505364492019 @default.
- W1750536449 countsByYear W17505364492020 @default.
- W1750536449 countsByYear W17505364492021 @default.
- W1750536449 countsByYear W17505364492022 @default.
- W1750536449 crossrefType "journal-article" @default.
- W1750536449 hasAuthorship W1750536449A5022147896 @default.
- W1750536449 hasAuthorship W1750536449A5081288689 @default.
- W1750536449 hasAuthorship W1750536449A5090264675 @default.
- W1750536449 hasBestOaLocation W17505364492 @default.
- W1750536449 hasConcept C104317684 @default.
- W1750536449 hasConcept C105795698 @default.
- W1750536449 hasConcept C119857082 @default.
- W1750536449 hasConcept C126255220 @default.
- W1750536449 hasConcept C127413603 @default.
- W1750536449 hasConcept C14036430 @default.
- W1750536449 hasConcept C149441793 @default.
- W1750536449 hasConcept C176147448 @default.
- W1750536449 hasConcept C177803969 @default.
- W1750536449 hasConcept C185592680 @default.
- W1750536449 hasConcept C186060115 @default.
- W1750536449 hasConcept C189430467 @default.
- W1750536449 hasConcept C197055811 @default.
- W1750536449 hasConcept C21200559 @default.
- W1750536449 hasConcept C24326235 @default.
- W1750536449 hasConcept C33923547 @default.
- W1750536449 hasConcept C41008148 @default.
- W1750536449 hasConcept C44154836 @default.
- W1750536449 hasConcept C55493867 @default.
- W1750536449 hasConcept C63479239 @default.
- W1750536449 hasConcept C73586568 @default.
- W1750536449 hasConcept C78458016 @default.
- W1750536449 hasConcept C86803240 @default.
- W1750536449 hasConceptScore W1750536449C104317684 @default.
- W1750536449 hasConceptScore W1750536449C105795698 @default.
- W1750536449 hasConceptScore W1750536449C119857082 @default.
- W1750536449 hasConceptScore W1750536449C126255220 @default.
- W1750536449 hasConceptScore W1750536449C127413603 @default.
- W1750536449 hasConceptScore W1750536449C14036430 @default.
- W1750536449 hasConceptScore W1750536449C149441793 @default.
- W1750536449 hasConceptScore W1750536449C176147448 @default.
- W1750536449 hasConceptScore W1750536449C177803969 @default.
- W1750536449 hasConceptScore W1750536449C185592680 @default.
- W1750536449 hasConceptScore W1750536449C186060115 @default.
- W1750536449 hasConceptScore W1750536449C189430467 @default.