Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750777592> ?p ?o ?g. }
- W1750777592 abstract "We consider the optimal stopping problem consisting in, given a strong Markov process, a reward function and a discount rate, finding the stopping time such that the expected reward at the stopping time is maximum. The approach we follow, has two main components: the Dynkin's characterization of the value function as the smallest excessive function dominating the reward; and the Riesz representation of excessive functions in terms of the Green kernel, the main reference being Salminen 85. In the context of one-dimensional diffusions we give a complete characterization of the solution under some assumptions on the reward function. If the optimal stopping problem is a ray, we provide a simple equation to find the boundary and discuss the validity of the smooth fit principle. We include some new examples as the optimal stopping of the skew Brownian motion and the sticky Brownian motion. In particular, we consider cases in which the smooth fit principle fails. In the general case, we propose an algorithm that finds the optimal stopping region when it is a disjoint union of intervals. We also give a simple formula for the value function. Using this algorithm we solve some examples including polynomial rewards. For general Markov processes with continuous sample paths (for instance multidimensional diffusions) we provide a verification theorem and use it to solve a particular problem. Finally we consider one-dimensional strong Markov processes with only positive (or only negative) jumps, and provide another verification theorem for right-sided (left-sided) problems. As applications of our results we address the problem of pricing an American put option in a Levy market, and also solve an optimal stopping problem for a Levy driven Ornstein-Uhlenbeck process." @default.
- W1750777592 created "2016-06-24" @default.
- W1750777592 creator A5033510291 @default.
- W1750777592 date "2012-01-01" @default.
- W1750777592 modified "2023-09-27" @default.
- W1750777592 title "Optimal Stopping for Strong Markov Processes : Explicit solutions and verification theorems for diffusions, multidimensional diffusions, and jump-processes." @default.
- W1750777592 cites W1498143389 @default.
- W1750777592 cites W1499969990 @default.
- W1750777592 cites W1503295912 @default.
- W1750777592 cites W1513192549 @default.
- W1750777592 cites W1548384575 @default.
- W1750777592 cites W1591710988 @default.
- W1750777592 cites W1969427057 @default.
- W1750777592 cites W1972137248 @default.
- W1750777592 cites W1990728587 @default.
- W1750777592 cites W1994585976 @default.
- W1750777592 cites W1998976715 @default.
- W1750777592 cites W2003840087 @default.
- W1750777592 cites W2012037220 @default.
- W1750777592 cites W2012087674 @default.
- W1750777592 cites W2024555717 @default.
- W1750777592 cites W2046495522 @default.
- W1750777592 cites W2067286730 @default.
- W1750777592 cites W2069323791 @default.
- W1750777592 cites W2071963801 @default.
- W1750777592 cites W2077791698 @default.
- W1750777592 cites W2081751350 @default.
- W1750777592 cites W2082613418 @default.
- W1750777592 cites W2103759071 @default.
- W1750777592 cites W2108593249 @default.
- W1750777592 cites W2114847643 @default.
- W1750777592 cites W2127565542 @default.
- W1750777592 cites W2127836939 @default.
- W1750777592 cites W2144738716 @default.
- W1750777592 cites W2151078973 @default.
- W1750777592 cites W2160984392 @default.
- W1750777592 cites W2468801668 @default.
- W1750777592 cites W2950370381 @default.
- W1750777592 cites W2952523305 @default.
- W1750777592 cites W563755649 @default.
- W1750777592 hasPublicationYear "2012" @default.
- W1750777592 type Work @default.
- W1750777592 sameAs 1750777592 @default.
- W1750777592 citedByCount "2" @default.
- W1750777592 countsByYear W17507775922016 @default.
- W1750777592 countsByYear W17507775922018 @default.
- W1750777592 crossrefType "posted-content" @default.
- W1750777592 hasAuthorship W1750777592A5033510291 @default.
- W1750777592 hasConcept C105795698 @default.
- W1750777592 hasConcept C111472728 @default.
- W1750777592 hasConcept C112401455 @default.
- W1750777592 hasConcept C126255220 @default.
- W1750777592 hasConcept C138885662 @default.
- W1750777592 hasConcept C14036430 @default.
- W1750777592 hasConcept C14646407 @default.
- W1750777592 hasConcept C159886148 @default.
- W1750777592 hasConcept C2780586882 @default.
- W1750777592 hasConcept C28826006 @default.
- W1750777592 hasConcept C33923547 @default.
- W1750777592 hasConcept C52832964 @default.
- W1750777592 hasConcept C78458016 @default.
- W1750777592 hasConcept C86803240 @default.
- W1750777592 hasConcept C98763669 @default.
- W1750777592 hasConcept C99414536 @default.
- W1750777592 hasConcept C99888217 @default.
- W1750777592 hasConceptScore W1750777592C105795698 @default.
- W1750777592 hasConceptScore W1750777592C111472728 @default.
- W1750777592 hasConceptScore W1750777592C112401455 @default.
- W1750777592 hasConceptScore W1750777592C126255220 @default.
- W1750777592 hasConceptScore W1750777592C138885662 @default.
- W1750777592 hasConceptScore W1750777592C14036430 @default.
- W1750777592 hasConceptScore W1750777592C14646407 @default.
- W1750777592 hasConceptScore W1750777592C159886148 @default.
- W1750777592 hasConceptScore W1750777592C2780586882 @default.
- W1750777592 hasConceptScore W1750777592C28826006 @default.
- W1750777592 hasConceptScore W1750777592C33923547 @default.
- W1750777592 hasConceptScore W1750777592C52832964 @default.
- W1750777592 hasConceptScore W1750777592C78458016 @default.
- W1750777592 hasConceptScore W1750777592C86803240 @default.
- W1750777592 hasConceptScore W1750777592C98763669 @default.
- W1750777592 hasConceptScore W1750777592C99414536 @default.
- W1750777592 hasConceptScore W1750777592C99888217 @default.
- W1750777592 hasLocation W17507775921 @default.
- W1750777592 hasOpenAccess W1750777592 @default.
- W1750777592 hasPrimaryLocation W17507775921 @default.
- W1750777592 hasRelatedWork W1993558670 @default.
- W1750777592 hasRelatedWork W2012087674 @default.
- W1750777592 hasRelatedWork W2056360380 @default.
- W1750777592 hasRelatedWork W2090231716 @default.
- W1750777592 hasRelatedWork W2097855907 @default.
- W1750777592 hasRelatedWork W2117721553 @default.
- W1750777592 hasRelatedWork W21612025 @default.
- W1750777592 hasRelatedWork W2519699592 @default.
- W1750777592 hasRelatedWork W2596018715 @default.
- W1750777592 hasRelatedWork W2624736824 @default.
- W1750777592 hasRelatedWork W2766329352 @default.
- W1750777592 hasRelatedWork W2921902336 @default.
- W1750777592 hasRelatedWork W2952523305 @default.
- W1750777592 hasRelatedWork W2963468930 @default.
- W1750777592 hasRelatedWork W2995704433 @default.