Matches in SemOpenAlex for { <https://semopenalex.org/work/W17508433> ?p ?o ?g. }
- W17508433 abstract "Author(s): Amini, Arash A. | Advisor(s): Wainwright, Martin J | Abstract: Advances in data acquisition and emergence of new sources of data, in recent years, have led to generation of massive datasets in many fields of science and engineering. These datasets are usually characterized by having high dimensions and low number of samples. Without appropriate modifications, classical tools of statistical analysis are not quite applicable in these settings. Much of the effort of contemporary research in statistics and related fields is to extend inference procedures, methodologies and theories to these new datasets. One widely used assumption which can mitigate the effects of dimensionality is the sparsity of the underlying parameters. In the first half of this thesis we consider principal component analysis (PCA), a classical dimension reduction procedure, in the high-dimensional setting with hard sparsity constraints. We will analyze the statistical performance of two modified procedures for PCA, a simple diagonal cut-off method and a more elaborate semidefinite programming relaxation (SDP). Our results characterize the statistical complexity of the two methods, in terms of the number of samples required for asymptotic recovery. The results show a trade-off between statistical and computational complexity. In the second half of the thesis, we consider PCA in function spaces (fPCA), an infinite-dimensional analog of PCA, also known as Karhunen-Loeve transform. We introduce a functional-theoretic framework to study effects of sampling in fPCA under smoothness constraints on functions. The framework generates high dimensional models with a different type of structural assumption, an ellipsoid condition, which can be thought of as a soft sparsity constraint. We provide a M-estimator to estimate principal component subspaces which takes the form of a regularized eigenvalue problem. We provide rates of convergence for the estimator and show minimax optimality. Along the way, some problems in approximation theory are also discussed." @default.
- W17508433 created "2016-06-24" @default.
- W17508433 creator A5020881664 @default.
- W17508433 date "2011-01-01" @default.
- W17508433 modified "2023-09-27" @default.
- W17508433 title "High-dimensional Principal Component Analysis" @default.
- W17508433 cites W1482235099 @default.
- W17508433 cites W1487825358 @default.
- W17508433 cites W1489537150 @default.
- W17508433 cites W1491387147 @default.
- W17508433 cites W1494904807 @default.
- W17508433 cites W1503425191 @default.
- W17508433 cites W1505749875 @default.
- W17508433 cites W1520752838 @default.
- W17508433 cites W1524622012 @default.
- W17508433 cites W1538147245 @default.
- W17508433 cites W1538452572 @default.
- W17508433 cites W1544632947 @default.
- W17508433 cites W1546851689 @default.
- W17508433 cites W1552609937 @default.
- W17508433 cites W1560153690 @default.
- W17508433 cites W1565176583 @default.
- W17508433 cites W1572043320 @default.
- W17508433 cites W1573820523 @default.
- W17508433 cites W1586554030 @default.
- W17508433 cites W1698155719 @default.
- W17508433 cites W1875112053 @default.
- W17508433 cites W1965720095 @default.
- W17508433 cites W1967134148 @default.
- W17508433 cites W1967573895 @default.
- W17508433 cites W1975900269 @default.
- W17508433 cites W1976625337 @default.
- W17508433 cites W1980073352 @default.
- W17508433 cites W1981573335 @default.
- W17508433 cites W1983960282 @default.
- W17508433 cites W1986280275 @default.
- W17508433 cites W1990393033 @default.
- W17508433 cites W1994280764 @default.
- W17508433 cites W1995405579 @default.
- W17508433 cites W1995496685 @default.
- W17508433 cites W1997834106 @default.
- W17508433 cites W2011058684 @default.
- W17508433 cites W2018158023 @default.
- W17508433 cites W2022806724 @default.
- W17508433 cites W2024724083 @default.
- W17508433 cites W2029458236 @default.
- W17508433 cites W2030360718 @default.
- W17508433 cites W2036144551 @default.
- W17508433 cites W2039470961 @default.
- W17508433 cites W2040669081 @default.
- W17508433 cites W2044600950 @default.
- W17508433 cites W2063698478 @default.
- W17508433 cites W206706296 @default.
- W17508433 cites W2081192873 @default.
- W17508433 cites W2081746825 @default.
- W17508433 cites W2083694956 @default.
- W17508433 cites W2089075540 @default.
- W17508433 cites W2091352038 @default.
- W17508433 cites W2099111195 @default.
- W17508433 cites W2101210333 @default.
- W17508433 cites W2101275186 @default.
- W17508433 cites W2104626092 @default.
- W17508433 cites W2106084579 @default.
- W17508433 cites W2109675189 @default.
- W17508433 cites W2111992537 @default.
- W17508433 cites W2113600901 @default.
- W17508433 cites W2128985829 @default.
- W17508433 cites W2131172946 @default.
- W17508433 cites W2134348739 @default.
- W17508433 cites W2144148350 @default.
- W17508433 cites W2145816995 @default.
- W17508433 cites W2146766088 @default.
- W17508433 cites W2147656689 @default.
- W17508433 cites W2153675946 @default.
- W17508433 cites W2157005274 @default.
- W17508433 cites W2158177004 @default.
- W17508433 cites W2167816765 @default.
- W17508433 cites W2296319761 @default.
- W17508433 cites W2296616510 @default.
- W17508433 cites W2328187444 @default.
- W17508433 cites W2479395228 @default.
- W17508433 cites W2575396683 @default.
- W17508433 cites W2610857016 @default.
- W17508433 cites W2615253071 @default.
- W17508433 cites W2798707604 @default.
- W17508433 cites W2798909945 @default.
- W17508433 cites W2912522929 @default.
- W17508433 cites W2949519220 @default.
- W17508433 cites W3021971632 @default.
- W17508433 cites W3040267042 @default.
- W17508433 cites W3098045837 @default.
- W17508433 cites W3099609308 @default.
- W17508433 cites W3101788651 @default.
- W17508433 cites W3102974460 @default.
- W17508433 cites W3103699839 @default.
- W17508433 cites W3113221786 @default.
- W17508433 cites W3125904670 @default.
- W17508433 cites W3186605155 @default.
- W17508433 cites W563799425 @default.
- W17508433 cites W574441371 @default.