Matches in SemOpenAlex for { <https://semopenalex.org/work/W1750884727> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1750884727 abstract "Canonical correlation analysis (CCA) is a valuable method for interpreting cross-covariance across related datasets of different dimensionality. There are many potential applications of CCA to neuroimaging data analysis. For instance, CCA can be used for finding functional similarities across fMRI datasets collected from multiple subjects without resampling individual datasets to a template anatomy. In this paper, we introduce Pyrcca, an open-source Python module for executing CCA between two or more datasets. Pyrcca can be used to implement CCA with or without regularization, and with or without linear or a Gaussian kernelization of the datasets. We demonstrate an application of CCA implemented with Pyrcca to neuroimaging data analysis. We use CCA to find a data-driven set of functional response patterns that are similar across individual subjects in a natural movie experiment. We then demonstrate how this set of response patterns discovered by CCA can be used to accurately predict subject responses to novel natural movie stimuli." @default.
- W1750884727 created "2016-06-24" @default.
- W1750884727 creator A5056348548 @default.
- W1750884727 creator A5077858104 @default.
- W1750884727 date "2015-03-05" @default.
- W1750884727 modified "2023-09-25" @default.
- W1750884727 title "Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging" @default.
- W1750884727 cites W1976193721 @default.
- W1750884727 cites W2020044743 @default.
- W1750884727 cites W2025341678 @default.
- W1750884727 cites W2052644075 @default.
- W1750884727 cites W2077745487 @default.
- W1750884727 cites W2100235303 @default.
- W1750884727 cites W2101234009 @default.
- W1750884727 cites W2126810579 @default.
- W1750884727 cites W2166403493 @default.
- W1750884727 hasPublicationYear "2015" @default.
- W1750884727 type Work @default.
- W1750884727 sameAs 1750884727 @default.
- W1750884727 citedByCount "1" @default.
- W1750884727 countsByYear W17508847272017 @default.
- W1750884727 crossrefType "posted-content" @default.
- W1750884727 hasAuthorship W1750884727A5056348548 @default.
- W1750884727 hasAuthorship W1750884727A5077858104 @default.
- W1750884727 hasConcept C105795698 @default.
- W1750884727 hasConcept C111919701 @default.
- W1750884727 hasConcept C11413529 @default.
- W1750884727 hasConcept C117220453 @default.
- W1750884727 hasConcept C118552586 @default.
- W1750884727 hasConcept C119857082 @default.
- W1750884727 hasConcept C124101348 @default.
- W1750884727 hasConcept C150921843 @default.
- W1750884727 hasConcept C153180895 @default.
- W1750884727 hasConcept C153874254 @default.
- W1750884727 hasConcept C154945302 @default.
- W1750884727 hasConcept C15744967 @default.
- W1750884727 hasConcept C165464430 @default.
- W1750884727 hasConcept C178650346 @default.
- W1750884727 hasConcept C207225210 @default.
- W1750884727 hasConcept C2524010 @default.
- W1750884727 hasConcept C33923547 @default.
- W1750884727 hasConcept C41008148 @default.
- W1750884727 hasConcept C519991488 @default.
- W1750884727 hasConcept C58693492 @default.
- W1750884727 hasConceptScore W1750884727C105795698 @default.
- W1750884727 hasConceptScore W1750884727C111919701 @default.
- W1750884727 hasConceptScore W1750884727C11413529 @default.
- W1750884727 hasConceptScore W1750884727C117220453 @default.
- W1750884727 hasConceptScore W1750884727C118552586 @default.
- W1750884727 hasConceptScore W1750884727C119857082 @default.
- W1750884727 hasConceptScore W1750884727C124101348 @default.
- W1750884727 hasConceptScore W1750884727C150921843 @default.
- W1750884727 hasConceptScore W1750884727C153180895 @default.
- W1750884727 hasConceptScore W1750884727C153874254 @default.
- W1750884727 hasConceptScore W1750884727C154945302 @default.
- W1750884727 hasConceptScore W1750884727C15744967 @default.
- W1750884727 hasConceptScore W1750884727C165464430 @default.
- W1750884727 hasConceptScore W1750884727C178650346 @default.
- W1750884727 hasConceptScore W1750884727C207225210 @default.
- W1750884727 hasConceptScore W1750884727C2524010 @default.
- W1750884727 hasConceptScore W1750884727C33923547 @default.
- W1750884727 hasConceptScore W1750884727C41008148 @default.
- W1750884727 hasConceptScore W1750884727C519991488 @default.
- W1750884727 hasConceptScore W1750884727C58693492 @default.
- W1750884727 hasLocation W17508847271 @default.
- W1750884727 hasOpenAccess W1750884727 @default.
- W1750884727 hasPrimaryLocation W17508847271 @default.
- W1750884727 hasRelatedWork W1906197606 @default.
- W1750884727 hasRelatedWork W1971677997 @default.
- W1750884727 hasRelatedWork W2037143677 @default.
- W1750884727 hasRelatedWork W2077745487 @default.
- W1750884727 hasRelatedWork W2591902503 @default.
- W1750884727 hasRelatedWork W2612174407 @default.
- W1750884727 hasRelatedWork W2631450235 @default.
- W1750884727 hasRelatedWork W2660287597 @default.
- W1750884727 hasRelatedWork W2773671959 @default.
- W1750884727 hasRelatedWork W2795774839 @default.
- W1750884727 hasRelatedWork W2891777199 @default.
- W1750884727 hasRelatedWork W290923189 @default.
- W1750884727 hasRelatedWork W2919958080 @default.
- W1750884727 hasRelatedWork W2946431466 @default.
- W1750884727 hasRelatedWork W2950328834 @default.
- W1750884727 hasRelatedWork W2963488396 @default.
- W1750884727 hasRelatedWork W3102343944 @default.
- W1750884727 hasRelatedWork W3179080929 @default.
- W1750884727 hasRelatedWork W3196858731 @default.
- W1750884727 isParatext "false" @default.
- W1750884727 isRetracted "false" @default.
- W1750884727 magId "1750884727" @default.
- W1750884727 workType "article" @default.