Matches in SemOpenAlex for { <https://semopenalex.org/work/W1752156593> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1752156593 abstract "We will study the angle sums of polytopes, working to exploit the analogy between the f-vector of faces in each dimension and the α-vector of angle sums. The Gram relation on the α-vector is analogous to the Euler relation on the f-vector. Similarly, the Perles relations on the angle sums of simplicial polytopes are analogous to the Dehn-Sommerville relations. First we describe the spaces spanned by the angle sums of certain classes of polytopes, as recorded in the α-vector and the α-f -vector. Families of polytopes are constructed whose angle sums span the spaces of polytopes defined by the Gram and Perles equations. This shows that the dimension of the affine span of the space of angle sums of simplices is fd-12f , and that of the combined angle sums and face numbers of simplicial polytopes and general polytopes are d - 1 and 2d - 3, respectively. Next we consider angle sums of polytopal complexes. We define the angle characteristic on the α-vector in analogy to the Euler characteristic. Then we consider the effect of a gluing operation to construct new complexes on the angle and Euler characteristics. We show that the changes in the two correspond and that, in the case of certain odd-dimensional polytopal complexes, the angle characteristic is half the Euler characteristic. In particular, we show that many non-convex spheres satisfy the Gram relation and handle-bodies of genus g constructed via gluings along disks have angle characteristic 1 - g. Finally, we consider spherical and hyperbolic polytopes and polytopal complexes. Spherical and hyperbolic analogs of the Gram relation and a spherical analog of the Perles relation are known, and we show the hyperbolic analog of the Perles relations in a number of cases. Proving this relation for simplices of dimension greater than 3 would finish the proof of this result. Also, we show how constructions on spherical and hyperbolic polytopes lead to corresponding changes in the angle characteristic and Euler characteristic. However, the angle characteristic and Euler characteristic do not have the 1:2 ratio that held for Euclidean polytopal complexes." @default.
- W1752156593 created "2016-06-24" @default.
- W1752156593 creator A5008530739 @default.
- W1752156593 creator A5013059811 @default.
- W1752156593 date "2006-01-01" @default.
- W1752156593 modified "2023-09-27" @default.
- W1752156593 title "Angle sums on polytopes and polytopal complexes" @default.
- W1752156593 cites W120618969 @default.
- W1752156593 cites W1509839074 @default.
- W1752156593 cites W1546959834 @default.
- W1752156593 cites W1795105982 @default.
- W1752156593 cites W1978075961 @default.
- W1752156593 cites W1980340889 @default.
- W1752156593 cites W1991050933 @default.
- W1752156593 cites W1993588229 @default.
- W1752156593 cites W2015528458 @default.
- W1752156593 cites W2018645515 @default.
- W1752156593 cites W2041186059 @default.
- W1752156593 cites W2054009182 @default.
- W1752156593 cites W2058743064 @default.
- W1752156593 cites W2084063180 @default.
- W1752156593 cites W2093804587 @default.
- W1752156593 cites W2094109393 @default.
- W1752156593 cites W2134654723 @default.
- W1752156593 cites W2148642357 @default.
- W1752156593 cites W2149205231 @default.
- W1752156593 cites W2152817078 @default.
- W1752156593 cites W2332275131 @default.
- W1752156593 cites W2400978041 @default.
- W1752156593 hasPublicationYear "2006" @default.
- W1752156593 type Work @default.
- W1752156593 sameAs 1752156593 @default.
- W1752156593 citedByCount "0" @default.
- W1752156593 crossrefType "journal-article" @default.
- W1752156593 hasAuthorship W1752156593A5008530739 @default.
- W1752156593 hasAuthorship W1752156593A5013059811 @default.
- W1752156593 hasConcept C112680207 @default.
- W1752156593 hasConcept C114614502 @default.
- W1752156593 hasConcept C13336665 @default.
- W1752156593 hasConcept C134306372 @default.
- W1752156593 hasConcept C145691206 @default.
- W1752156593 hasConcept C196433757 @default.
- W1752156593 hasConcept C202444582 @default.
- W1752156593 hasConcept C2524010 @default.
- W1752156593 hasConcept C33676613 @default.
- W1752156593 hasConcept C33923547 @default.
- W1752156593 hasConcept C62884695 @default.
- W1752156593 hasConceptScore W1752156593C112680207 @default.
- W1752156593 hasConceptScore W1752156593C114614502 @default.
- W1752156593 hasConceptScore W1752156593C13336665 @default.
- W1752156593 hasConceptScore W1752156593C134306372 @default.
- W1752156593 hasConceptScore W1752156593C145691206 @default.
- W1752156593 hasConceptScore W1752156593C196433757 @default.
- W1752156593 hasConceptScore W1752156593C202444582 @default.
- W1752156593 hasConceptScore W1752156593C2524010 @default.
- W1752156593 hasConceptScore W1752156593C33676613 @default.
- W1752156593 hasConceptScore W1752156593C33923547 @default.
- W1752156593 hasConceptScore W1752156593C62884695 @default.
- W1752156593 hasLocation W17521565931 @default.
- W1752156593 hasOpenAccess W1752156593 @default.
- W1752156593 hasPrimaryLocation W17521565931 @default.
- W1752156593 hasRelatedWork W1556147540 @default.
- W1752156593 hasRelatedWork W1620725384 @default.
- W1752156593 hasRelatedWork W1932634740 @default.
- W1752156593 hasRelatedWork W1973253581 @default.
- W1752156593 hasRelatedWork W2011015230 @default.
- W1752156593 hasRelatedWork W2058743064 @default.
- W1752156593 hasRelatedWork W2496551997 @default.
- W1752156593 hasRelatedWork W2767506110 @default.
- W1752156593 hasRelatedWork W2798184001 @default.
- W1752156593 hasRelatedWork W2895314891 @default.
- W1752156593 hasRelatedWork W2951468667 @default.
- W1752156593 hasRelatedWork W2952933047 @default.
- W1752156593 hasRelatedWork W2996187017 @default.
- W1752156593 hasRelatedWork W3004360453 @default.
- W1752156593 hasRelatedWork W3040640913 @default.
- W1752156593 hasRelatedWork W3119087094 @default.
- W1752156593 hasRelatedWork W3180026897 @default.
- W1752156593 hasRelatedWork W399952771 @default.
- W1752156593 hasRelatedWork W579593124 @default.
- W1752156593 hasRelatedWork W2981870561 @default.
- W1752156593 isParatext "false" @default.
- W1752156593 isRetracted "false" @default.
- W1752156593 magId "1752156593" @default.
- W1752156593 workType "article" @default.