Matches in SemOpenAlex for { <https://semopenalex.org/work/W1752438862> ?p ?o ?g. }
- W1752438862 abstract "This thesis addresses the problem of industrial real-time process optimization that suffers from the presence of uncertainty. Since a process model is typically used to compute the optimal operating conditions, both plant-model mismatch and process disturbances can result in suboptimal or, worse, infeasible operation. Hence, for practical applications, methodologies that help avoid re-optimization during process operation, at the cost of an acceptable optimality loss, become important. The design and analysis of such approximate solution strategies in real-time optimization (RTO) demand a careful analysis of the components of the necessary conditions of optimality. This thesis analyzes the role of constraints in process optimality in the presence of uncertainty. This analysis is made in two steps. Firstly, a general analysis is developed to quantify the effect of input adaptation on process performance for static RTO problems. In the second part, the general features of input adaptation for dynamic RTO problems are analyzed with focus on the constraints. Accordingly, the thesis is organized in two parts: For static RTO, a joint analysis of the model optimal inputs, the plant optimal inputs and a class of adapted inputs, and For dynamic RTO, an analytical study of the effect of local adaptation of the model optimal inputs. The first part (Chapters 2 and 3) addresses the problem of adapting the inputs to optimize the plant. The investigation takes a constructive viewpoint, but it is limited to static RTO problems modeled as parametric nonlinear programming (pNLP) problems. In this approach, the inputs are not limited to being local adaptation of the model optimal inputs but, instead, they can change significantly to optimize the plant. Hence, one needs to consider the fact that the set of active constraints for the model and the plant can be different. It is proven that, for a wide class of systems, the detection of a change in the active set contributes only negligibly to optimality, as long as the adapted solution remains feasible. More precisely, if η denotes the magnitude of the parametric variations and if the linear independence constraint qualification (LICQ) and strong second-order sufficient condition (SSOSC) hold for the underlying pNLP, the optimality loss due to any feasible input that conserves only the strict nominal active set is of magnitude O(η2), irrespective of whether or not there is a change in the set of active constraints. The implication of this result for a static RTO algorithm is to prioritize the satisfaction of only a core set of constraints, as long as it is possible to meet the feasibility requirements. The second part (Chapters 4 and 5) of the thesis deals with a way of adapting the model optimal inputs in dynamic RTO problems. This adaptation is made along two sets of directions such that one type of adaptation does not affect the nominally active constraints, while the other does. These directions are termed the sensitivity-seeking (SS) and the constraint-seeking (CS) directions, respectively. The SS and CS directions are defined as elements of a fairly general function space of input variations. A mathematical criterion is derived to define SS directions for a general class of optimal control problems involving both path and terminal constraints. According to this criterion, the SS directions turn out to be solutions of linear integral equations that are completely defined by the model optimal solution. The CS directions are then chosen orthogonal to the subspace of SS directions, where orthogonality is defined with respect to a chosen inner product on the space of input variations. It follows that the corresponding subspaces are infinite-dimensional subspaces of the function space of input variations. It is proven that, when uncertainty is modeled in terms of small parametric variations, the aforementioned classification of input adaptation leads to clearly distinguishable cost variations. More precisely, if η denotes the magnitude of the parametric variations, adaptation of the model optimal inputs along SS directions causes a cost variation of magnitude O(η2). On the other hand, the cost variation due to input adaptation along CS directions is of magnitude O(η). Furthermore, a numerical procedure is proposed for computing the SS and CS components of a given input variation. These components are projections of the input variation on the infinite-dimensional subspaces of SS and CS directions. The numerical procedure consists of the following three steps: approximation of the optimal control problem by a pNLP problem, projection of the given direction on the finite-dimensional SS and CS subspaces of the pNLP and, finally, reconstruction of the SS and CS components of the original problem from those of the pNLP." @default.
- W1752438862 created "2016-06-24" @default.
- W1752438862 creator A5047794545 @default.
- W1752438862 date "2012-01-01" @default.
- W1752438862 modified "2023-09-28" @default.
- W1752438862 title "On the Role of Constraints in Optimization under Uncertainty" @default.
- W1752438862 cites W113966369 @default.
- W1752438862 cites W1515569264 @default.
- W1752438862 cites W1529344387 @default.
- W1752438862 cites W1536201489 @default.
- W1752438862 cites W1579781026 @default.
- W1752438862 cites W1608865561 @default.
- W1752438862 cites W165899944 @default.
- W1752438862 cites W1967264087 @default.
- W1752438862 cites W1970570040 @default.
- W1752438862 cites W1972871126 @default.
- W1752438862 cites W1976971336 @default.
- W1752438862 cites W1978956894 @default.
- W1752438862 cites W1982019931 @default.
- W1752438862 cites W1983214127 @default.
- W1752438862 cites W1984072130 @default.
- W1752438862 cites W1986354150 @default.
- W1752438862 cites W1989445941 @default.
- W1752438862 cites W1993647205 @default.
- W1752438862 cites W1994325510 @default.
- W1752438862 cites W2008325025 @default.
- W1752438862 cites W2016211524 @default.
- W1752438862 cites W2020431812 @default.
- W1752438862 cites W2021974634 @default.
- W1752438862 cites W2024395357 @default.
- W1752438862 cites W2026934856 @default.
- W1752438862 cites W2030155088 @default.
- W1752438862 cites W2040328223 @default.
- W1752438862 cites W2042621986 @default.
- W1752438862 cites W2046804521 @default.
- W1752438862 cites W2061157561 @default.
- W1752438862 cites W2065797920 @default.
- W1752438862 cites W2068717022 @default.
- W1752438862 cites W2071466071 @default.
- W1752438862 cites W2071912487 @default.
- W1752438862 cites W2075620433 @default.
- W1752438862 cites W2078299259 @default.
- W1752438862 cites W2086100841 @default.
- W1752438862 cites W2092324187 @default.
- W1752438862 cites W2095098515 @default.
- W1752438862 cites W2098502158 @default.
- W1752438862 cites W2098744451 @default.
- W1752438862 cites W2104616371 @default.
- W1752438862 cites W2110703708 @default.
- W1752438862 cites W2129190872 @default.
- W1752438862 cites W2134948300 @default.
- W1752438862 cites W2164957979 @default.
- W1752438862 cites W2168170446 @default.
- W1752438862 cites W2218983664 @default.
- W1752438862 cites W2315031998 @default.
- W1752438862 cites W2607928667 @default.
- W1752438862 cites W2797638056 @default.
- W1752438862 cites W2974720244 @default.
- W1752438862 cites W3195133498 @default.
- W1752438862 cites W3206777520 @default.
- W1752438862 cites W361852394 @default.
- W1752438862 cites W400061169 @default.
- W1752438862 cites W410789168 @default.
- W1752438862 cites W656005671 @default.
- W1752438862 doi "https://doi.org/10.5075/epfl-thesis-5170" @default.
- W1752438862 hasPublicationYear "2012" @default.
- W1752438862 type Work @default.
- W1752438862 sameAs 1752438862 @default.
- W1752438862 citedByCount "0" @default.
- W1752438862 crossrefType "journal-article" @default.
- W1752438862 hasAuthorship W1752438862A5047794545 @default.
- W1752438862 hasConcept C105795698 @default.
- W1752438862 hasConcept C111919701 @default.
- W1752438862 hasConcept C117251300 @default.
- W1752438862 hasConcept C120665830 @default.
- W1752438862 hasConcept C121332964 @default.
- W1752438862 hasConcept C126255220 @default.
- W1752438862 hasConcept C137836250 @default.
- W1752438862 hasConcept C139807058 @default.
- W1752438862 hasConcept C192209626 @default.
- W1752438862 hasConcept C2776045410 @default.
- W1752438862 hasConcept C2778701210 @default.
- W1752438862 hasConcept C33923547 @default.
- W1752438862 hasConcept C41008148 @default.
- W1752438862 hasConcept C98045186 @default.
- W1752438862 hasConceptScore W1752438862C105795698 @default.
- W1752438862 hasConceptScore W1752438862C111919701 @default.
- W1752438862 hasConceptScore W1752438862C117251300 @default.
- W1752438862 hasConceptScore W1752438862C120665830 @default.
- W1752438862 hasConceptScore W1752438862C121332964 @default.
- W1752438862 hasConceptScore W1752438862C126255220 @default.
- W1752438862 hasConceptScore W1752438862C137836250 @default.
- W1752438862 hasConceptScore W1752438862C139807058 @default.
- W1752438862 hasConceptScore W1752438862C192209626 @default.
- W1752438862 hasConceptScore W1752438862C2776045410 @default.
- W1752438862 hasConceptScore W1752438862C2778701210 @default.
- W1752438862 hasConceptScore W1752438862C33923547 @default.
- W1752438862 hasConceptScore W1752438862C41008148 @default.
- W1752438862 hasConceptScore W1752438862C98045186 @default.
- W1752438862 hasLocation W17524388621 @default.