Matches in SemOpenAlex for { <https://semopenalex.org/work/W1753416612> ?p ?o ?g. }
- W1753416612 abstract "A wealth of geochemical and petrological data provide evidence that the processes of fractional crystallization, assimilation, and magma recharge (replenishment) dominate the chemical signatures of many terrestrial igneous rocks. Previous work [ Spera and Bohrson , 2001; Bohrson and Spera , 2001] has established the importance of integrating energy, species and mass conservation into simulations of complex magma chamber processes. An extended version of the energy‐constrained formulation, Energy‐Constrained Recharge, Assimilation, Fractional Crystallization (EC‐RAFC), tracks mass and compositional variations of melt, cumulates, and enclaves in a magma body undergoing simultaneous recharge, assimilation, and fractional crystallization [ Spera and Bohrson , 2002]. Because many EC‐RAFC results are distinct from those predicted by extant RAFC formulations, the primary goal of this paper is to present a range of geochemical and mass relationships for selected cases that highlight issues relevant to modern petrology. Among the plethora of petrologic problems that have important, well‐documented analogues in nature are the geochemical distinctions that arise when a magma body undergoes continuous versus episodic recharge, the connection between erupted magmas and associated cumulate bodies, the behavior of recharge‐fractionation dominated systems (RFC), thermodynamic conditions that promote the formation of enclaves versus cumulates, and the conditions under which magma bodies may be described as chemically homogeneous. Investigation of the effects of continuous versus episodic recharge for mafic magma undergoing RAFC in the lower crust indicates that the resulting geochemical trends for melt and solids are sensitive to the intensity and composition of recharge, suggesting that EC‐RAFC may be used as a tool to distinguish the nature of the recharge events. Compared to the record preserved in melts, the geochemical and mass characteristics of solids associated with particular RAFC events may record a more complete view of the physiochemical history of an open‐system magma body. The capability of EC‐RAFC to track melts and solids creates a genetic link that can be compared to natural analogues such as layered mafic intrusions and flood basalts, or mafic enclaves and their intermediate‐composition volcanic or plutonic hosts. The ability to quantify chemical and volume characteristics of solids and melts also underscores the need for integrated field, petrologic and geochemical studies of igneous systems. While it appears that a number of volcanic events or systems may be characterized by continuous influx or eruption of magma (“steady state systems”), reports describing compositional homogeneity for products that represent eruptions of more than one event are relatively rare. In support of this, EC‐RAFC results indicate that very specific combinations of recharge conditions, bulk distribution coefficients, and element concentrations are required to achieve geochemical homogeneity during cooling of a magma body undergoing RAFC. In summary, critical points are that EC‐RAFC provides a method to quantitatively investigate complex magmatic systems in a thermodynamic context; it predicts complex, nonmonotonic geochemical trends for which there are natural analogues that have been difficult to model; and finally, EC‐RAFC establishes the link between the chemical and physical attributes of a magmatic system. Application of EC‐RAFC promises to improve our understanding of specific tectonomagmatic systems as well as enhance our grasp of the essential physiochemical principles that govern magma body evolution." @default.
- W1753416612 created "2016-06-24" @default.
- W1753416612 creator A5013565235 @default.
- W1753416612 creator A5082113063 @default.
- W1753416612 date "2003-02-01" @default.
- W1753416612 modified "2023-10-15" @default.
- W1753416612 title "Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)" @default.
- W1753416612 cites W102444515 @default.
- W1753416612 cites W1523430970 @default.
- W1753416612 cites W1607247829 @default.
- W1753416612 cites W1964984684 @default.
- W1753416612 cites W1973111378 @default.
- W1753416612 cites W1989491939 @default.
- W1753416612 cites W1992900078 @default.
- W1753416612 cites W1994235531 @default.
- W1753416612 cites W2000266108 @default.
- W1753416612 cites W2002058301 @default.
- W1753416612 cites W2005354462 @default.
- W1753416612 cites W2014623771 @default.
- W1753416612 cites W2017853565 @default.
- W1753416612 cites W2023026057 @default.
- W1753416612 cites W2023540560 @default.
- W1753416612 cites W2024575502 @default.
- W1753416612 cites W2033565367 @default.
- W1753416612 cites W2040049557 @default.
- W1753416612 cites W2041980112 @default.
- W1753416612 cites W2043337029 @default.
- W1753416612 cites W2054517206 @default.
- W1753416612 cites W2055828600 @default.
- W1753416612 cites W2057128748 @default.
- W1753416612 cites W2063436373 @default.
- W1753416612 cites W2087278861 @default.
- W1753416612 cites W2090854845 @default.
- W1753416612 cites W2092343734 @default.
- W1753416612 cites W2093329912 @default.
- W1753416612 cites W2099974007 @default.
- W1753416612 cites W2105068734 @default.
- W1753416612 cites W2108425616 @default.
- W1753416612 cites W2111248788 @default.
- W1753416612 cites W2118153886 @default.
- W1753416612 cites W2129544616 @default.
- W1753416612 cites W2150081011 @default.
- W1753416612 cites W2151102034 @default.
- W1753416612 cites W2155115076 @default.
- W1753416612 cites W2160302802 @default.
- W1753416612 cites W2163847662 @default.
- W1753416612 doi "https://doi.org/10.1029/2002gc000316" @default.
- W1753416612 hasPublicationYear "2003" @default.
- W1753416612 type Work @default.
- W1753416612 sameAs 1753416612 @default.
- W1753416612 citedByCount "42" @default.
- W1753416612 countsByYear W17534166122012 @default.
- W1753416612 countsByYear W17534166122013 @default.
- W1753416612 countsByYear W17534166122014 @default.
- W1753416612 countsByYear W17534166122015 @default.
- W1753416612 countsByYear W17534166122016 @default.
- W1753416612 countsByYear W17534166122017 @default.
- W1753416612 countsByYear W17534166122018 @default.
- W1753416612 countsByYear W17534166122019 @default.
- W1753416612 countsByYear W17534166122020 @default.
- W1753416612 countsByYear W17534166122021 @default.
- W1753416612 countsByYear W17534166122023 @default.
- W1753416612 crossrefType "journal-article" @default.
- W1753416612 hasAuthorship W1753416612A5013565235 @default.
- W1753416612 hasAuthorship W1753416612A5082113063 @default.
- W1753416612 hasBestOaLocation W17534166121 @default.
- W1753416612 hasConcept C11872896 @default.
- W1753416612 hasConcept C120806208 @default.
- W1753416612 hasConcept C127313418 @default.
- W1753416612 hasConcept C167236342 @default.
- W1753416612 hasConcept C167284885 @default.
- W1753416612 hasConcept C174091901 @default.
- W1753416612 hasConcept C17409809 @default.
- W1753416612 hasConcept C183222429 @default.
- W1753416612 hasConcept C187320778 @default.
- W1753416612 hasConcept C1965285 @default.
- W1753416612 hasConcept C2776698055 @default.
- W1753416612 hasConcept C42787717 @default.
- W1753416612 hasConcept C5900021 @default.
- W1753416612 hasConcept C67236022 @default.
- W1753416612 hasConcept C75622301 @default.
- W1753416612 hasConcept C76177295 @default.
- W1753416612 hasConcept C9566828 @default.
- W1753416612 hasConceptScore W1753416612C11872896 @default.
- W1753416612 hasConceptScore W1753416612C120806208 @default.
- W1753416612 hasConceptScore W1753416612C127313418 @default.
- W1753416612 hasConceptScore W1753416612C167236342 @default.
- W1753416612 hasConceptScore W1753416612C167284885 @default.
- W1753416612 hasConceptScore W1753416612C174091901 @default.
- W1753416612 hasConceptScore W1753416612C17409809 @default.
- W1753416612 hasConceptScore W1753416612C183222429 @default.
- W1753416612 hasConceptScore W1753416612C187320778 @default.
- W1753416612 hasConceptScore W1753416612C1965285 @default.
- W1753416612 hasConceptScore W1753416612C2776698055 @default.
- W1753416612 hasConceptScore W1753416612C42787717 @default.
- W1753416612 hasConceptScore W1753416612C5900021 @default.
- W1753416612 hasConceptScore W1753416612C67236022 @default.
- W1753416612 hasConceptScore W1753416612C75622301 @default.
- W1753416612 hasConceptScore W1753416612C76177295 @default.
- W1753416612 hasConceptScore W1753416612C9566828 @default.