Matches in SemOpenAlex for { <https://semopenalex.org/work/W175543934> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W175543934 abstract "We use algebraic techniques to study homological filling functions of groups and their subgroups. If $G$ is a group admitting a finite $(n+1)$--dimensional $K(G,1)$ and $H leq G$ is of type $F_{n+1}$, then the $n^{th}$--homological filling function of $H$ is bounded above by that of $G$. This contrast with known examples where such inequality does not hold under weaker conditions on the ambient group $G$ or the subgroup $H$. We include applications to hyperbolic groups and homotopical filling functions." @default.
- W175543934 created "2016-06-24" @default.
- W175543934 creator A5004848063 @default.
- W175543934 creator A5028946767 @default.
- W175543934 date "2014-06-04" @default.
- W175543934 modified "2023-09-27" @default.
- W175543934 title "A Subgroup Theorem for Homological Filling Functions" @default.
- W175543934 cites W1509350773 @default.
- W175543934 cites W1630072945 @default.
- W175543934 cites W1991866868 @default.
- W175543934 cites W2026119659 @default.
- W175543934 cites W2032694901 @default.
- W175543934 cites W2087690917 @default.
- W175543934 cites W2102102535 @default.
- W175543934 cites W2326630299 @default.
- W175543934 cites W2578181793 @default.
- W175543934 cites W2949159629 @default.
- W175543934 cites W3113020645 @default.
- W175543934 hasPublicationYear "2014" @default.
- W175543934 type Work @default.
- W175543934 sameAs 175543934 @default.
- W175543934 citedByCount "0" @default.
- W175543934 crossrefType "posted-content" @default.
- W175543934 hasAuthorship W175543934A5004848063 @default.
- W175543934 hasAuthorship W175543934A5028946767 @default.
- W175543934 hasConcept C114614502 @default.
- W175543934 hasConcept C121332964 @default.
- W175543934 hasConcept C134306372 @default.
- W175543934 hasConcept C202444582 @default.
- W175543934 hasConcept C2781311116 @default.
- W175543934 hasConcept C33923547 @default.
- W175543934 hasConcept C34388435 @default.
- W175543934 hasConcept C62520636 @default.
- W175543934 hasConceptScore W175543934C114614502 @default.
- W175543934 hasConceptScore W175543934C121332964 @default.
- W175543934 hasConceptScore W175543934C134306372 @default.
- W175543934 hasConceptScore W175543934C202444582 @default.
- W175543934 hasConceptScore W175543934C2781311116 @default.
- W175543934 hasConceptScore W175543934C33923547 @default.
- W175543934 hasConceptScore W175543934C34388435 @default.
- W175543934 hasConceptScore W175543934C62520636 @default.
- W175543934 hasLocation W1755439341 @default.
- W175543934 hasOpenAccess W175543934 @default.
- W175543934 hasPrimaryLocation W1755439341 @default.
- W175543934 hasRelatedWork W1565942912 @default.
- W175543934 hasRelatedWork W1614757833 @default.
- W175543934 hasRelatedWork W1983735493 @default.
- W175543934 hasRelatedWork W1989887015 @default.
- W175543934 hasRelatedWork W1992743863 @default.
- W175543934 hasRelatedWork W1996107117 @default.
- W175543934 hasRelatedWork W1996517076 @default.
- W175543934 hasRelatedWork W1996727771 @default.
- W175543934 hasRelatedWork W2010709994 @default.
- W175543934 hasRelatedWork W2027037379 @default.
- W175543934 hasRelatedWork W2036938863 @default.
- W175543934 hasRelatedWork W2047830423 @default.
- W175543934 hasRelatedWork W2314905358 @default.
- W175543934 hasRelatedWork W2329169070 @default.
- W175543934 hasRelatedWork W2568251854 @default.
- W175543934 hasRelatedWork W2949432163 @default.
- W175543934 hasRelatedWork W2953328089 @default.
- W175543934 hasRelatedWork W2963667685 @default.
- W175543934 hasRelatedWork W3102406319 @default.
- W175543934 hasRelatedWork W3214372972 @default.
- W175543934 isParatext "false" @default.
- W175543934 isRetracted "false" @default.
- W175543934 magId "175543934" @default.
- W175543934 workType "article" @default.