Matches in SemOpenAlex for { <https://semopenalex.org/work/W175850519> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W175850519 abstract "For various reasons, including speed code simplicity and symbolic approximation, it is still very interesting to analyze simple iteration formulas for root finding. The classical analysis of iteration formulas concentrates on their convergence near a root. We find experimentally, that this information is almost useless. The (apparently) random walk followed by iteration formulas before reaching convergence is the dominating factor in their performance. We study a set of 29 iteration formulas from a theoretical and a practical point of view. We define a new property of the formulas, their far-convergence, in an effort to explain their behaviours. Extensive experimentation finding polynomial roots, shows that there are extreme differences in performance of seemingly similar iterators. This is a surprising result. We use this experimental approach to select the most effective performer, which is La-guerre’s method. The best companion (second method) to handle the failures of Laguerre’s is a new method which is an adaptation of Halley’s method to multipoint computation. The little-known Ostrowski’s method comes out with one of the best performances. We also find that an unknown simple variant of Newton’s method behaves much better than Newton’s method itself, which behaves very poorly. This shows that sometimes it pays to modify a method to improve its far-convergence. Various performance curiosities cannot be explained in terms of neither order of convergence and are probably caused by the paths that the methods force on the iteration values. The study of these random paths is an open problem, probably beyond our present tools." @default.
- W175850519 created "2016-06-24" @default.
- W175850519 creator A5013025384 @default.
- W175850519 date "2001-01-01" @default.
- W175850519 modified "2023-09-25" @default.
- W175850519 title "A Study of Iteration Formulas for Root Finding, Where Mathematics, Computer Algebra and Software Engineering Meet" @default.
- W175850519 cites W4239096436 @default.
- W175850519 doi "https://doi.org/10.1007/978-3-0348-8266-8_11" @default.
- W175850519 hasPublicationYear "2001" @default.
- W175850519 type Work @default.
- W175850519 sameAs 175850519 @default.
- W175850519 citedByCount "1" @default.
- W175850519 countsByYear W1758505192023 @default.
- W175850519 crossrefType "book-chapter" @default.
- W175850519 hasAuthorship W175850519A5013025384 @default.
- W175850519 hasConcept C110812573 @default.
- W175850519 hasConcept C111472728 @default.
- W175850519 hasConcept C11413529 @default.
- W175850519 hasConcept C134306372 @default.
- W175850519 hasConcept C138885662 @default.
- W175850519 hasConcept C162324750 @default.
- W175850519 hasConcept C171078966 @default.
- W175850519 hasConcept C177264268 @default.
- W175850519 hasConcept C199360897 @default.
- W175850519 hasConcept C2776372474 @default.
- W175850519 hasConcept C2777303404 @default.
- W175850519 hasConcept C2780586882 @default.
- W175850519 hasConcept C28826006 @default.
- W175850519 hasConcept C33923547 @default.
- W175850519 hasConcept C41008148 @default.
- W175850519 hasConcept C41895202 @default.
- W175850519 hasConcept C45374587 @default.
- W175850519 hasConcept C50522688 @default.
- W175850519 hasConcept C90119067 @default.
- W175850519 hasConceptScore W175850519C110812573 @default.
- W175850519 hasConceptScore W175850519C111472728 @default.
- W175850519 hasConceptScore W175850519C11413529 @default.
- W175850519 hasConceptScore W175850519C134306372 @default.
- W175850519 hasConceptScore W175850519C138885662 @default.
- W175850519 hasConceptScore W175850519C162324750 @default.
- W175850519 hasConceptScore W175850519C171078966 @default.
- W175850519 hasConceptScore W175850519C177264268 @default.
- W175850519 hasConceptScore W175850519C199360897 @default.
- W175850519 hasConceptScore W175850519C2776372474 @default.
- W175850519 hasConceptScore W175850519C2777303404 @default.
- W175850519 hasConceptScore W175850519C2780586882 @default.
- W175850519 hasConceptScore W175850519C28826006 @default.
- W175850519 hasConceptScore W175850519C33923547 @default.
- W175850519 hasConceptScore W175850519C41008148 @default.
- W175850519 hasConceptScore W175850519C41895202 @default.
- W175850519 hasConceptScore W175850519C45374587 @default.
- W175850519 hasConceptScore W175850519C50522688 @default.
- W175850519 hasConceptScore W175850519C90119067 @default.
- W175850519 hasLocation W1758505191 @default.
- W175850519 hasOpenAccess W175850519 @default.
- W175850519 hasPrimaryLocation W1758505191 @default.
- W175850519 hasRelatedWork W1510299683 @default.
- W175850519 hasRelatedWork W1543079445 @default.
- W175850519 hasRelatedWork W1547105496 @default.
- W175850519 hasRelatedWork W1983312106 @default.
- W175850519 hasRelatedWork W1989118474 @default.
- W175850519 hasRelatedWork W1992425050 @default.
- W175850519 hasRelatedWork W2001029765 @default.
- W175850519 hasRelatedWork W2029955135 @default.
- W175850519 hasRelatedWork W2074558919 @default.
- W175850519 hasRelatedWork W2354040966 @default.
- W175850519 hasRelatedWork W2786598203 @default.
- W175850519 hasRelatedWork W2885465588 @default.
- W175850519 hasRelatedWork W2965291189 @default.
- W175850519 hasRelatedWork W3092776912 @default.
- W175850519 hasRelatedWork W3096659018 @default.
- W175850519 hasRelatedWork W3098709846 @default.
- W175850519 hasRelatedWork W3161758032 @default.
- W175850519 hasRelatedWork W2480526561 @default.
- W175850519 hasRelatedWork W2547610036 @default.
- W175850519 hasRelatedWork W306291624 @default.
- W175850519 isParatext "false" @default.
- W175850519 isRetracted "false" @default.
- W175850519 magId "175850519" @default.
- W175850519 workType "book-chapter" @default.