Matches in SemOpenAlex for { <https://semopenalex.org/work/W175909076> ?p ?o ?g. }
- W175909076 endingPage "283" @default.
- W175909076 startingPage "275" @default.
- W175909076 abstract "Accurate diagnosis of Alzheimer’s disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method." @default.
- W175909076 created "2016-06-24" @default.
- W175909076 creator A5000937401 @default.
- W175909076 creator A5018821033 @default.
- W175909076 creator A5035038002 @default.
- W175909076 creator A5054044789 @default.
- W175909076 date "2013-01-01" @default.
- W175909076 modified "2023-09-27" @default.
- W175909076 title "Manifold Regularized Multi-Task Feature Selection for Multi-Modality Classification in Alzheimer’s Disease" @default.
- W175909076 cites W155481447 @default.
- W175909076 cites W1990334093 @default.
- W175909076 cites W1998710995 @default.
- W175909076 cites W2000292092 @default.
- W175909076 cites W2014915963 @default.
- W175909076 cites W2122320288 @default.
- W175909076 cites W2135562430 @default.
- W175909076 cites W2136573752 @default.
- W175909076 cites W2138019504 @default.
- W175909076 cites W2146089088 @default.
- W175909076 cites W3125261624 @default.
- W175909076 doi "https://doi.org/10.1007/978-3-642-40811-3_35" @default.
- W175909076 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4109068" @default.
- W175909076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24505676" @default.
- W175909076 hasPublicationYear "2013" @default.
- W175909076 type Work @default.
- W175909076 sameAs 175909076 @default.
- W175909076 citedByCount "26" @default.
- W175909076 countsByYear W1759090762014 @default.
- W175909076 countsByYear W1759090762015 @default.
- W175909076 countsByYear W1759090762016 @default.
- W175909076 countsByYear W1759090762017 @default.
- W175909076 countsByYear W1759090762019 @default.
- W175909076 countsByYear W1759090762020 @default.
- W175909076 countsByYear W1759090762022 @default.
- W175909076 countsByYear W1759090762023 @default.
- W175909076 crossrefType "book-chapter" @default.
- W175909076 hasAuthorship W175909076A5000937401 @default.
- W175909076 hasAuthorship W175909076A5018821033 @default.
- W175909076 hasAuthorship W175909076A5035038002 @default.
- W175909076 hasAuthorship W175909076A5054044789 @default.
- W175909076 hasBestOaLocation W1759090761 @default.
- W175909076 hasConcept C118552586 @default.
- W175909076 hasConcept C119857082 @default.
- W175909076 hasConcept C126838900 @default.
- W175909076 hasConcept C144024400 @default.
- W175909076 hasConcept C148483581 @default.
- W175909076 hasConcept C151876577 @default.
- W175909076 hasConcept C153180895 @default.
- W175909076 hasConcept C154945302 @default.
- W175909076 hasConcept C162324750 @default.
- W175909076 hasConcept C187736073 @default.
- W175909076 hasConcept C2775842073 @default.
- W175909076 hasConcept C2776135515 @default.
- W175909076 hasConcept C2779903281 @default.
- W175909076 hasConcept C2780226545 @default.
- W175909076 hasConcept C2780451532 @default.
- W175909076 hasConcept C28006648 @default.
- W175909076 hasConcept C36289849 @default.
- W175909076 hasConcept C41008148 @default.
- W175909076 hasConcept C58693492 @default.
- W175909076 hasConcept C70518039 @default.
- W175909076 hasConcept C71924100 @default.
- W175909076 hasConcept C97931131 @default.
- W175909076 hasConceptScore W175909076C118552586 @default.
- W175909076 hasConceptScore W175909076C119857082 @default.
- W175909076 hasConceptScore W175909076C126838900 @default.
- W175909076 hasConceptScore W175909076C144024400 @default.
- W175909076 hasConceptScore W175909076C148483581 @default.
- W175909076 hasConceptScore W175909076C151876577 @default.
- W175909076 hasConceptScore W175909076C153180895 @default.
- W175909076 hasConceptScore W175909076C154945302 @default.
- W175909076 hasConceptScore W175909076C162324750 @default.
- W175909076 hasConceptScore W175909076C187736073 @default.
- W175909076 hasConceptScore W175909076C2775842073 @default.
- W175909076 hasConceptScore W175909076C2776135515 @default.
- W175909076 hasConceptScore W175909076C2779903281 @default.
- W175909076 hasConceptScore W175909076C2780226545 @default.
- W175909076 hasConceptScore W175909076C2780451532 @default.
- W175909076 hasConceptScore W175909076C28006648 @default.
- W175909076 hasConceptScore W175909076C36289849 @default.
- W175909076 hasConceptScore W175909076C41008148 @default.
- W175909076 hasConceptScore W175909076C58693492 @default.
- W175909076 hasConceptScore W175909076C70518039 @default.
- W175909076 hasConceptScore W175909076C71924100 @default.
- W175909076 hasConceptScore W175909076C97931131 @default.
- W175909076 hasLocation W1759090761 @default.
- W175909076 hasLocation W1759090762 @default.
- W175909076 hasLocation W1759090763 @default.
- W175909076 hasLocation W1759090764 @default.
- W175909076 hasOpenAccess W175909076 @default.
- W175909076 hasPrimaryLocation W1759090761 @default.
- W175909076 hasRelatedWork W2024160000 @default.
- W175909076 hasRelatedWork W2044788538 @default.
- W175909076 hasRelatedWork W2061273563 @default.
- W175909076 hasRelatedWork W2285052147 @default.
- W175909076 hasRelatedWork W2613123485 @default.
- W175909076 hasRelatedWork W2729514902 @default.
- W175909076 hasRelatedWork W2773500201 @default.