Matches in SemOpenAlex for { <https://semopenalex.org/work/W1759617810> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1759617810 abstract "Chapter II:Footprinting of Oligonucleotides on Double HelicalDNA using MPE•Fe(II), DNase I, and Dimethyl Sulfate Pyrimidine oligonucleotides can, when equipped with the thymidine-EDTA• Fe(II) analogue (T*), recognize and subsequently cleave double helical DNA at binding sites>15 base pairs in size. If binding affinities of unmodifiedoligonucleotides are to be determined under conditions relevant to those in vivo, alternate methods of detecting oligonucleotide-directed triple helix formation are required. The footprinting of short (up to 15 base pairs) triple helical regions on restriction fragment size DNA has been undertaken. Techniques for the determination of oligonucleo tide binding to double helical DNA using MPE•Fe(II), DNase I, and dimethyl sulfate have beendeveloped. MPE•Fe(II) allows for the determination of binding site size, and has shown that oligonucleo tide binding to DNA is cation concentration, solvent, and oligonucleotide length dependent. DNase I footprinting wasconducted under conditions optimal for DNase I activity (10 mM in each Mg^(+2) and Ca^(+2)), demonstrating that oligonucleotide-directed triplexes are capable of interfering with protein activity at the oligonucleotide binding site under physiological conditions, and that divalent cations can stabilize triple helix formation. Footprinting using dimethyl sulfate reveals that a single guanine 3' to the binding site becomes hyperreactive to methylation upon triplex formation. This suggests that the triplex-duplex junction involves a change in DNA conformation which is largely limited to a single base pair. DMS footprinting reveals that the oligonucleotide CT-15 (T_5(CT)_5) does not bind the terminal 2 base pairs of the binding site in plasmid PDMAG10. DMS footprinting can be used to analyze the binding of oligonucleotides to DNAunder conditions not amenable to MPE•Fe(II) or DNase I activity, and to assay the kinetics of oligonucleotide binding. DMS and DNase I footprinting techniques were used to assay for the effect of oligonucleotide concentrationand base composition on binding affinity. Chapter III:Oligonucleotide-Directed Triple Helix Formation usingOligonucleotides with Increased Binding Affinities The specificity offered by the triple helix motif might provide a method for the artificial repression of gene expression and viral diseases. Changes inoligonucleotide structure could be used to control oligonucleotide affinity under in vivo conditions, where temporal and spatial intracellular pH (7.0-7.4) and ionic strength are strictly regulated and cannot be altered. Substitution at position 5 of pyrimidines alters the hydrophobic driving force, base stacking, and the electronic complementarity of the Hoogsteen base pairing for triple helix formation. Incorporation of 5-substituted pyrimidines offers a method of modulating binding affinity without changing the hydrogen bonding pattern and sequence specificities of pyrimidine oligonucleotides. Replacement of 2'd eoxycytidine with 5-methyl-2'-deoxycytidine increases the oligonucleotide affinity and extends the pH range for binding. Substitution of 5-bromo-2'deoxyuridinefor thymidine increases binding affinity. Oligonucleotides constructed with 2'-deoxyuridine show lower binding affinities. Pyrimidine oligonucleotides constructed from 5-iodo-2'-deoxyuridines and 5-ethynyl-2'deoxyuridines display increased binding affinities relative to thymidine, but decreased relative to 5-bromouridine containing Oligonucleotides. Substitution by ethyl, pentyl, pentynyl, 2-phenyl-ethynyl, or fluoro at the 5 position of 2'deoxyuridine or bromo at the 5 position of 2'-deoxycytidine residues results in oligonucleotides with decreased binding affinities for double helical DNA. Chapter IV:Efficient, Base-Specific Alkylation of DNAusing N-Bromoacetyloligonucleotides The attachment of a non-specific diffusible cleaving functionality to a DNA binding molecule allows for the elucidation of the structural principles for DNA recognition, a technique termed affinity cleaving. Once these principles have been determined, it becomes possible to design and attach structural domains designed to carry out a desired DNA modification. The development of a thymidine derivative capable of efficient and base specificDNA modification is reported. N-bromoacetyloligonucleotides are capable of near quantitative double strand modification of double helical DNA at a single guanine position in a manner which produces ends which are ligatable withcompatible ends produced by conventional restriction enzyme digestion. The products thus produced are capable of transforming bacterial cell lines. N-bromoacetyloligonucleotides modify double helical DNA with specificities great enough to produce efficient (>90%) chemical cleavage at a single site within a yeast chromosome 340 kbp in size. The acceleration obtained by tethering a reactive moiety to a DNA binding unit has been estimated. The rate of alkylation of DNA by N-bromoacetyloligonucleotidesand bromoacetamide has been measured. Comparison of these ra tes indicates that an effective molarity of 2-3 M is obtained upon tethering the bromoacetyl moiety to an oligonucleotide to effect triple helix mediated DNA alkylation. The utility of the bromoacetyl moiety as a reporter group is shown in studies concerning the effect of oligonucleotide length on binding affinity andthe cooperative interaction between oligonucleotides binding abutting sites is reported." @default.
- W1759617810 created "2016-06-24" @default.
- W1759617810 creator A5007480001 @default.
- W1759617810 date "1992-01-01" @default.
- W1759617810 modified "2023-09-27" @default.
- W1759617810 title "Oligonucleotide directed sequence specific recognition and alkylation of double helical DNA by triple helix formation" @default.
- W1759617810 hasPublicationYear "1992" @default.
- W1759617810 type Work @default.
- W1759617810 sameAs 1759617810 @default.
- W1759617810 citedByCount "0" @default.
- W1759617810 crossrefType "dissertation" @default.
- W1759617810 hasAuthorship W1759617810A5007480001 @default.
- W1759617810 hasConcept C104317684 @default.
- W1759617810 hasConcept C107824862 @default.
- W1759617810 hasConcept C10919887 @default.
- W1759617810 hasConcept C12554922 @default.
- W1759617810 hasConcept C129312508 @default.
- W1759617810 hasConcept C185581394 @default.
- W1759617810 hasConcept C185592680 @default.
- W1759617810 hasConcept C18903297 @default.
- W1759617810 hasConcept C22427896 @default.
- W1759617810 hasConcept C2778021871 @default.
- W1759617810 hasConcept C2778530040 @default.
- W1759617810 hasConcept C2779377703 @default.
- W1759617810 hasConcept C2779965526 @default.
- W1759617810 hasConcept C3017666073 @default.
- W1759617810 hasConcept C552990157 @default.
- W1759617810 hasConcept C55493867 @default.
- W1759617810 hasConcept C71240020 @default.
- W1759617810 hasConcept C86339819 @default.
- W1759617810 hasConcept C86803240 @default.
- W1759617810 hasConcept C94966510 @default.
- W1759617810 hasConceptScore W1759617810C104317684 @default.
- W1759617810 hasConceptScore W1759617810C107824862 @default.
- W1759617810 hasConceptScore W1759617810C10919887 @default.
- W1759617810 hasConceptScore W1759617810C12554922 @default.
- W1759617810 hasConceptScore W1759617810C129312508 @default.
- W1759617810 hasConceptScore W1759617810C185581394 @default.
- W1759617810 hasConceptScore W1759617810C185592680 @default.
- W1759617810 hasConceptScore W1759617810C18903297 @default.
- W1759617810 hasConceptScore W1759617810C22427896 @default.
- W1759617810 hasConceptScore W1759617810C2778021871 @default.
- W1759617810 hasConceptScore W1759617810C2778530040 @default.
- W1759617810 hasConceptScore W1759617810C2779377703 @default.
- W1759617810 hasConceptScore W1759617810C2779965526 @default.
- W1759617810 hasConceptScore W1759617810C3017666073 @default.
- W1759617810 hasConceptScore W1759617810C552990157 @default.
- W1759617810 hasConceptScore W1759617810C55493867 @default.
- W1759617810 hasConceptScore W1759617810C71240020 @default.
- W1759617810 hasConceptScore W1759617810C86339819 @default.
- W1759617810 hasConceptScore W1759617810C86803240 @default.
- W1759617810 hasConceptScore W1759617810C94966510 @default.
- W1759617810 hasLocation W17596178101 @default.
- W1759617810 hasOpenAccess W1759617810 @default.
- W1759617810 hasPrimaryLocation W17596178101 @default.
- W1759617810 hasRelatedWork W1970778541 @default.
- W1759617810 hasRelatedWork W1975944271 @default.
- W1759617810 hasRelatedWork W1981598117 @default.
- W1759617810 hasRelatedWork W1995799650 @default.
- W1759617810 hasRelatedWork W2009487000 @default.
- W1759617810 hasRelatedWork W2015546073 @default.
- W1759617810 hasRelatedWork W2036425882 @default.
- W1759617810 hasRelatedWork W2055524326 @default.
- W1759617810 hasRelatedWork W2086779091 @default.
- W1759617810 hasRelatedWork W2090529326 @default.
- W1759617810 hasRelatedWork W2092290788 @default.
- W1759617810 hasRelatedWork W2107142375 @default.
- W1759617810 hasRelatedWork W2134396393 @default.
- W1759617810 hasRelatedWork W2148161521 @default.
- W1759617810 hasRelatedWork W2151412264 @default.
- W1759617810 hasRelatedWork W2155297587 @default.
- W1759617810 hasRelatedWork W2169345930 @default.
- W1759617810 hasRelatedWork W2274624319 @default.
- W1759617810 hasRelatedWork W2418063518 @default.
- W1759617810 hasRelatedWork W191394893 @default.
- W1759617810 isParatext "false" @default.
- W1759617810 isRetracted "false" @default.
- W1759617810 magId "1759617810" @default.
- W1759617810 workType "dissertation" @default.