Matches in SemOpenAlex for { <https://semopenalex.org/work/W1760945919> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1760945919 endingPage "1760" @default.
- W1760945919 startingPage "1749" @default.
- W1760945919 abstract "In the majority of traditional extreme learning machine (ELM) approaches, the parameters of the basis functions are randomly generated and do not need to be tuned, while the weights connecting the hidden layer to the output layer are analytically estimated. The determination of the optimal number of basis functions to be included in the hidden layer is still an open problem. Cross-validation and heuristic approaches (constructive and destructive) are some of the methodologies used to perform this task. Recently, a deterministic algorithm based on the principal component analysis (PCA) and ELM has been proposed to assess the number of basis functions according to the number of principal components necessary to explain the 90 % of the variance in the data. In this work, the PCA part of the PCA---ELM algorithm is joined to the linear discriminant analysis (LDA) as a hybrid means to perform the pruning of the hidden nodes. This is justified by the fact that the LDA approach is outperforming the PCA one on a set of problems. Hence, the idea of combining the two approaches in a LDA---PCA---ELM algorithm is shown to be in average better than its PCA---ELM and LDA---ELM counterparts. Moreover, the performance in classification and the number of basis functions selected by the algorithm, on a set of benchmark problems, have been compared and validated in the experimental section using nonparametric tests against a set of existing ELM techniques." @default.
- W1760945919 created "2016-06-24" @default.
- W1760945919 creator A5018647644 @default.
- W1760945919 creator A5032236580 @default.
- W1760945919 creator A5084162302 @default.
- W1760945919 creator A5086980043 @default.
- W1760945919 date "2015-06-25" @default.
- W1760945919 modified "2023-10-18" @default.
- W1760945919 title "Enforcement of the principal component analysis–extreme learning machine algorithm by linear discriminant analysis" @default.
- W1760945919 cites W1521989125 @default.
- W1760945919 cites W1595159159 @default.
- W1760945919 cites W1966022471 @default.
- W1760945919 cites W1986336378 @default.
- W1760945919 cites W1990938413 @default.
- W1760945919 cites W1992612094 @default.
- W1760945919 cites W2002728347 @default.
- W1760945919 cites W2016944307 @default.
- W1760945919 cites W2026131661 @default.
- W1760945919 cites W2038812607 @default.
- W1760945919 cites W2040604977 @default.
- W1760945919 cites W2052570068 @default.
- W1760945919 cites W2068148331 @default.
- W1760945919 cites W2076837258 @default.
- W1760945919 cites W2084567445 @default.
- W1760945919 cites W2096987757 @default.
- W1760945919 cites W2111072639 @default.
- W1760945919 cites W2114354594 @default.
- W1760945919 cites W2119600483 @default.
- W1760945919 cites W2121705522 @default.
- W1760945919 cites W2122040390 @default.
- W1760945919 cites W2130378394 @default.
- W1760945919 cites W2134262590 @default.
- W1760945919 cites W2141695047 @default.
- W1760945919 cites W2165967751 @default.
- W1760945919 cites W4205210034 @default.
- W1760945919 doi "https://doi.org/10.1007/s00521-015-1974-0" @default.
- W1760945919 hasPublicationYear "2015" @default.
- W1760945919 type Work @default.
- W1760945919 sameAs 1760945919 @default.
- W1760945919 citedByCount "3" @default.
- W1760945919 countsByYear W17609459192016 @default.
- W1760945919 countsByYear W17609459192018 @default.
- W1760945919 countsByYear W17609459192022 @default.
- W1760945919 crossrefType "journal-article" @default.
- W1760945919 hasAuthorship W1760945919A5018647644 @default.
- W1760945919 hasAuthorship W1760945919A5032236580 @default.
- W1760945919 hasAuthorship W1760945919A5084162302 @default.
- W1760945919 hasAuthorship W1760945919A5086980043 @default.
- W1760945919 hasBestOaLocation W17609459192 @default.
- W1760945919 hasConcept C104500394 @default.
- W1760945919 hasConcept C11413529 @default.
- W1760945919 hasConcept C119857082 @default.
- W1760945919 hasConcept C121332964 @default.
- W1760945919 hasConcept C153180895 @default.
- W1760945919 hasConcept C154945302 @default.
- W1760945919 hasConcept C168167062 @default.
- W1760945919 hasConcept C27438332 @default.
- W1760945919 hasConcept C2780150128 @default.
- W1760945919 hasConcept C41008148 @default.
- W1760945919 hasConcept C50644808 @default.
- W1760945919 hasConcept C68597687 @default.
- W1760945919 hasConcept C69738355 @default.
- W1760945919 hasConcept C97355855 @default.
- W1760945919 hasConceptScore W1760945919C104500394 @default.
- W1760945919 hasConceptScore W1760945919C11413529 @default.
- W1760945919 hasConceptScore W1760945919C119857082 @default.
- W1760945919 hasConceptScore W1760945919C121332964 @default.
- W1760945919 hasConceptScore W1760945919C153180895 @default.
- W1760945919 hasConceptScore W1760945919C154945302 @default.
- W1760945919 hasConceptScore W1760945919C168167062 @default.
- W1760945919 hasConceptScore W1760945919C27438332 @default.
- W1760945919 hasConceptScore W1760945919C2780150128 @default.
- W1760945919 hasConceptScore W1760945919C41008148 @default.
- W1760945919 hasConceptScore W1760945919C50644808 @default.
- W1760945919 hasConceptScore W1760945919C68597687 @default.
- W1760945919 hasConceptScore W1760945919C69738355 @default.
- W1760945919 hasConceptScore W1760945919C97355855 @default.
- W1760945919 hasIssue "6" @default.
- W1760945919 hasLocation W17609459191 @default.
- W1760945919 hasLocation W17609459192 @default.
- W1760945919 hasOpenAccess W1760945919 @default.
- W1760945919 hasPrimaryLocation W17609459191 @default.
- W1760945919 hasRelatedWork W1979102611 @default.
- W1760945919 hasRelatedWork W1984671715 @default.
- W1760945919 hasRelatedWork W2052589448 @default.
- W1760945919 hasRelatedWork W2167601730 @default.
- W1760945919 hasRelatedWork W2367227827 @default.
- W1760945919 hasRelatedWork W2371006619 @default.
- W1760945919 hasRelatedWork W2380744779 @default.
- W1760945919 hasRelatedWork W2380927352 @default.
- W1760945919 hasRelatedWork W2980846366 @default.
- W1760945919 hasRelatedWork W94476185 @default.
- W1760945919 hasVolume "27" @default.
- W1760945919 isParatext "false" @default.
- W1760945919 isRetracted "false" @default.
- W1760945919 magId "1760945919" @default.
- W1760945919 workType "article" @default.