Matches in SemOpenAlex for { <https://semopenalex.org/work/W176313890> ?p ?o ?g. }
- W176313890 abstract "Recovering low-rank and sparse matrices from incomplete or corrupted observations is an important problem in machine learning, statistics, bioinformatics, computer vision, as well as signal and image processing. In theory, this problem can be solved by the natural convex joint/mixed relaxations (i.e., l_{1}-norm and trace norm) under certain conditions. However, all current provable algorithms suffer from superlinear per-iteration cost, which severely limits their applicability to large-scale problems. In this paper, we propose a scalable, provable structured low-rank matrix factorization method to recover low-rank and sparse matrices from missing and grossly corrupted data, i.e., robust matrix completion (RMC) problems, or incomplete and grossly corrupted measurements, i.e., compressive principal component pursuit (CPCP) problems. Specifically, we first present two small-scale matrix trace norm regularized bilinear structured factorization models for RMC and CPCP problems, in which repetitively calculating SVD of a large-scale matrix is replaced by updating two much smaller factor matrices. Then, we apply the alternating direction method of multipliers (ADMM) to efficiently solve the RMC problems. Finally, we provide the convergence analysis of our algorithm, and extend it to address general CPCP problems. Experimental results verified both the efficiency and effectiveness of our method compared with the state-of-the-art methods." @default.
- W176313890 created "2016-06-24" @default.
- W176313890 creator A5016082884 @default.
- W176313890 creator A5067858777 @default.
- W176313890 creator A5068043486 @default.
- W176313890 creator A5084933676 @default.
- W176313890 creator A5085614235 @default.
- W176313890 date "2014-09-03" @default.
- W176313890 modified "2023-10-11" @default.
- W176313890 title "Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations" @default.
- W176313890 cites W1626337535 @default.
- W176313890 cites W1824659232 @default.
- W176313890 cites W1972702299 @default.
- W176313890 cites W1974042113 @default.
- W176313890 cites W1977016492 @default.
- W176313890 cites W1985488339 @default.
- W176313890 cites W1986691909 @default.
- W176313890 cites W1997201895 @default.
- W176313890 cites W2006904655 @default.
- W176313890 cites W2011359124 @default.
- W176313890 cites W2013854956 @default.
- W176313890 cites W2027801633 @default.
- W176313890 cites W2032355985 @default.
- W176313890 cites W2036285176 @default.
- W176313890 cites W2037549374 @default.
- W176313890 cites W2050248182 @default.
- W176313890 cites W2050346719 @default.
- W176313890 cites W2060204507 @default.
- W176313890 cites W2068548513 @default.
- W176313890 cites W2076430826 @default.
- W176313890 cites W2079558799 @default.
- W176313890 cites W2083138589 @default.
- W176313890 cites W2087941186 @default.
- W176313890 cites W2095536970 @default.
- W176313890 cites W2096642693 @default.
- W176313890 cites W2098670069 @default.
- W176313890 cites W2100549954 @default.
- W176313890 cites W2103972604 @default.
- W176313890 cites W2110531331 @default.
- W176313890 cites W2120580172 @default.
- W176313890 cites W2124252039 @default.
- W176313890 cites W2124584309 @default.
- W176313890 cites W2125874614 @default.
- W176313890 cites W2131628350 @default.
- W176313890 cites W2139349101 @default.
- W176313890 cites W2140803156 @default.
- W176313890 cites W2143701678 @default.
- W176313890 cites W2145179194 @default.
- W176313890 cites W2145962650 @default.
- W176313890 cites W2146130798 @default.
- W176313890 cites W2148940141 @default.
- W176313890 cites W2153636395 @default.
- W176313890 cites W2158121106 @default.
- W176313890 cites W2164278908 @default.
- W176313890 cites W2168903001 @default.
- W176313890 cites W2339666411 @default.
- W176313890 cites W2395625855 @default.
- W176313890 cites W2611328865 @default.
- W176313890 cites W2962909343 @default.
- W176313890 cites W2963112220 @default.
- W176313890 cites W3106324661 @default.
- W176313890 cites W63384232 @default.
- W176313890 cites W2144730813 @default.
- W176313890 cites W2889106020 @default.
- W176313890 doi "https://doi.org/10.48550/arxiv.1409.1062" @default.
- W176313890 hasPublicationYear "2014" @default.
- W176313890 type Work @default.
- W176313890 sameAs 176313890 @default.
- W176313890 citedByCount "1" @default.
- W176313890 countsByYear W1763138902014 @default.
- W176313890 crossrefType "posted-content" @default.
- W176313890 hasAuthorship W176313890A5016082884 @default.
- W176313890 hasAuthorship W176313890A5067858777 @default.
- W176313890 hasAuthorship W176313890A5068043486 @default.
- W176313890 hasAuthorship W176313890A5084933676 @default.
- W176313890 hasAuthorship W176313890A5085614235 @default.
- W176313890 hasBestOaLocation W1763138901 @default.
- W176313890 hasConcept C106487976 @default.
- W176313890 hasConcept C11413529 @default.
- W176313890 hasConcept C114614502 @default.
- W176313890 hasConcept C121332964 @default.
- W176313890 hasConcept C126255220 @default.
- W176313890 hasConcept C155281189 @default.
- W176313890 hasConcept C158693339 @default.
- W176313890 hasConcept C159985019 @default.
- W176313890 hasConcept C163716315 @default.
- W176313890 hasConcept C164226766 @default.
- W176313890 hasConcept C187834632 @default.
- W176313890 hasConcept C192562407 @default.
- W176313890 hasConcept C202444582 @default.
- W176313890 hasConcept C22789450 @default.
- W176313890 hasConcept C2778459887 @default.
- W176313890 hasConcept C33923547 @default.
- W176313890 hasConcept C41008148 @default.
- W176313890 hasConcept C42355184 @default.
- W176313890 hasConcept C48044578 @default.
- W176313890 hasConcept C56372850 @default.
- W176313890 hasConcept C62520636 @default.
- W176313890 hasConcept C77088390 @default.
- W176313890 hasConcept C90199385 @default.