Matches in SemOpenAlex for { <https://semopenalex.org/work/W1768568560> ?p ?o ?g. }
- W1768568560 abstract "To improve accuracy and efficiency of object detection and classification with hyperspectral imagery (HSI), we propose a novel smoothing algorithm by coupling of a Laplacian-based reaction term to a classical divergence-based anisotropic diffusion partial differential equation (PDE). In addition, an adaptive parameter is introduced to regularize this nonlinear reaction-diffusion PDE by explicitly integrating the interband correlations with the noise level of each band in HSI. It is also well-known that the interband correlations can be implicitly embedded into the diffusion coefficient of the divergence-based PDE, to allow a selective smoothing that reduces the local homogeneous area variability while preventing smoothing across edges. Therefore, the interband correlations in HSI are exploited in the proposed method in both explicit and implicit ways. As a result, our algorithm is more effective at controlling the behavior of the diffusion evolution when compared to previous multi/hyperspectral diffusion algorithms. The simulations based on both synthetic data and real hyperspectral remote sensing data show that our algorithm can improve the hyperspectral data quality in terms of both visual inspection and image quality indices." @default.
- W1768568560 created "2016-06-24" @default.
- W1768568560 creator A5014326389 @default.
- W1768568560 creator A5030657860 @default.
- W1768568560 creator A5063406632 @default.
- W1768568560 creator A5064708195 @default.
- W1768568560 date "2015-06-01" @default.
- W1768568560 modified "2023-09-22" @default.
- W1768568560 title "Gradient and Laplacian-Based Hyperspectral Anisotropic Diffusion" @default.
- W1768568560 cites W127809959 @default.
- W1768568560 cites W1480546554 @default.
- W1768568560 cites W1531660685 @default.
- W1768568560 cites W1535934056 @default.
- W1768568560 cites W1536200267 @default.
- W1768568560 cites W1547791452 @default.
- W1768568560 cites W1971097302 @default.
- W1768568560 cites W1971931849 @default.
- W1768568560 cites W1979971871 @default.
- W1768568560 cites W1996048318 @default.
- W1768568560 cites W2001002651 @default.
- W1768568560 cites W2008675585 @default.
- W1768568560 cites W2011524553 @default.
- W1768568560 cites W2014374676 @default.
- W1768568560 cites W2016819955 @default.
- W1768568560 cites W2020288269 @default.
- W1768568560 cites W2026519711 @default.
- W1768568560 cites W2027401313 @default.
- W1768568560 cites W2027898483 @default.
- W1768568560 cites W2049003564 @default.
- W1768568560 cites W2062086498 @default.
- W1768568560 cites W2078404340 @default.
- W1768568560 cites W2084890997 @default.
- W1768568560 cites W2087662988 @default.
- W1768568560 cites W2102236241 @default.
- W1768568560 cites W2102443333 @default.
- W1768568560 cites W2103559027 @default.
- W1768568560 cites W2112829808 @default.
- W1768568560 cites W2116295973 @default.
- W1768568560 cites W2118322172 @default.
- W1768568560 cites W2122752532 @default.
- W1768568560 cites W2130094715 @default.
- W1768568560 cites W2133665775 @default.
- W1768568560 cites W2137676365 @default.
- W1768568560 cites W2140702875 @default.
- W1768568560 cites W2141732607 @default.
- W1768568560 cites W2145023731 @default.
- W1768568560 cites W2146052399 @default.
- W1768568560 cites W2147469781 @default.
- W1768568560 cites W2150134853 @default.
- W1768568560 cites W2155124307 @default.
- W1768568560 cites W2155633677 @default.
- W1768568560 cites W2156982777 @default.
- W1768568560 cites W2164822588 @default.
- W1768568560 cites W2169743053 @default.
- W1768568560 cites W2322364181 @default.
- W1768568560 cites W2923753617 @default.
- W1768568560 cites W3011612142 @default.
- W1768568560 cites W849381656 @default.
- W1768568560 cites W2481767672 @default.
- W1768568560 doi "https://doi.org/10.1109/jstars.2015.2439671" @default.
- W1768568560 hasPublicationYear "2015" @default.
- W1768568560 type Work @default.
- W1768568560 sameAs 1768568560 @default.
- W1768568560 citedByCount "0" @default.
- W1768568560 crossrefType "journal-article" @default.
- W1768568560 hasAuthorship W1768568560A5014326389 @default.
- W1768568560 hasAuthorship W1768568560A5030657860 @default.
- W1768568560 hasAuthorship W1768568560A5063406632 @default.
- W1768568560 hasAuthorship W1768568560A5064708195 @default.
- W1768568560 hasConcept C100695618 @default.
- W1768568560 hasConcept C11413529 @default.
- W1768568560 hasConcept C115961682 @default.
- W1768568560 hasConcept C121332964 @default.
- W1768568560 hasConcept C134306372 @default.
- W1768568560 hasConcept C135628077 @default.
- W1768568560 hasConcept C138885662 @default.
- W1768568560 hasConcept C141651230 @default.
- W1768568560 hasConcept C153180895 @default.
- W1768568560 hasConcept C154945302 @default.
- W1768568560 hasConcept C159078339 @default.
- W1768568560 hasConcept C165700671 @default.
- W1768568560 hasConcept C181145010 @default.
- W1768568560 hasConcept C203504353 @default.
- W1768568560 hasConcept C207390915 @default.
- W1768568560 hasConcept C31972630 @default.
- W1768568560 hasConcept C33923547 @default.
- W1768568560 hasConcept C3770464 @default.
- W1768568560 hasConcept C41008148 @default.
- W1768568560 hasConcept C41895202 @default.
- W1768568560 hasConcept C69357855 @default.
- W1768568560 hasConcept C93779851 @default.
- W1768568560 hasConcept C97355855 @default.
- W1768568560 hasConcept C99498987 @default.
- W1768568560 hasConceptScore W1768568560C100695618 @default.
- W1768568560 hasConceptScore W1768568560C11413529 @default.
- W1768568560 hasConceptScore W1768568560C115961682 @default.
- W1768568560 hasConceptScore W1768568560C121332964 @default.
- W1768568560 hasConceptScore W1768568560C134306372 @default.
- W1768568560 hasConceptScore W1768568560C135628077 @default.
- W1768568560 hasConceptScore W1768568560C138885662 @default.