Matches in SemOpenAlex for { <https://semopenalex.org/work/W1771099042> ?p ?o ?g. }
- W1771099042 abstract "A major objective of environmental epidemiology is to elucidate exposure-health outcome associations. To increase the variance of observed exposure concentrations, researchers recruit individuals from different geographic areas. The common analytical approach uses multilevel analysis to estimate individual-level associations adjusted for individual and area covariates. However, in cross-sectional data this approach does not differentiate between residual confounding at the individual level and at the area level. An approach allowing researchers to distinguish between within-group effects and between-group effects would improve the robustness of causal claims.We applied an extended multilevel approach to a large cross-sectional study aimed to elucidate the hypothesized link between drinking water pollution from perfluoroctanoic acid (PFOA) and plasma levels of C-reactive protein (CRP) or lymphocyte counts. Using within- and between-group regression of the individual PFOA serum concentrations, we partitioned the total effect into a within- and between-group effect by including the aggregated group average of the individual exposure concentrations as an additional predictor variable.For both biomarkers, we observed a strong overall association with PFOA blood levels. However, for lymphocyte counts the extended multilevel approach revealed the absence of a between-group effect, suggesting that most of the observed total effect was due to individual level confounding. In contrast, for CRP we found consistent between- and within-group effects, which corroborates the causal claim for the association between PFOA blood levels and CRP.Between- and within-group regression modelling augments cross-sectional analysis of epidemiological data by supporting the unmasking of non-causal associations arising from hidden confounding at different levels. In the application example presented in this paper, the approach suggested individual confounding as a probable explanation for the first observed association and strengthened the robustness of the causal claim for the second one." @default.
- W1771099042 created "2016-06-24" @default.
- W1771099042 creator A5039500726 @default.
- W1771099042 creator A5042865170 @default.
- W1771099042 creator A5046372853 @default.
- W1771099042 creator A5061681110 @default.
- W1771099042 date "2015-07-10" @default.
- W1771099042 modified "2023-10-15" @default.
- W1771099042 title "Within- and between-group regression for improving the robustness of causal claims in cross-sectional analysis" @default.
- W1771099042 cites W1568390176 @default.
- W1771099042 cites W184316663 @default.
- W1771099042 cites W2000476420 @default.
- W1771099042 cites W2004939703 @default.
- W1771099042 cites W2005855690 @default.
- W1771099042 cites W2013264192 @default.
- W1771099042 cites W2024064489 @default.
- W1771099042 cites W2038826970 @default.
- W1771099042 cites W2048144992 @default.
- W1771099042 cites W2054079560 @default.
- W1771099042 cites W2066182646 @default.
- W1771099042 cites W2068337533 @default.
- W1771099042 cites W2075493391 @default.
- W1771099042 cites W2086662317 @default.
- W1771099042 cites W2098189516 @default.
- W1771099042 cites W2108818539 @default.
- W1771099042 cites W2112750336 @default.
- W1771099042 cites W2119217392 @default.
- W1771099042 cites W2136859480 @default.
- W1771099042 cites W2139003935 @default.
- W1771099042 cites W2149860264 @default.
- W1771099042 cites W2151355802 @default.
- W1771099042 cites W2155660257 @default.
- W1771099042 cites W2155669879 @default.
- W1771099042 cites W2161769908 @default.
- W1771099042 cites W2164938191 @default.
- W1771099042 cites W2334074250 @default.
- W1771099042 cites W3121647782 @default.
- W1771099042 cites W3125656997 @default.
- W1771099042 doi "https://doi.org/10.1186/s12940-015-0047-2" @default.
- W1771099042 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4702298" @default.
- W1771099042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26159541" @default.
- W1771099042 hasPublicationYear "2015" @default.
- W1771099042 type Work @default.
- W1771099042 sameAs 1771099042 @default.
- W1771099042 citedByCount "13" @default.
- W1771099042 countsByYear W17710990422018 @default.
- W1771099042 countsByYear W17710990422019 @default.
- W1771099042 countsByYear W17710990422020 @default.
- W1771099042 countsByYear W17710990422021 @default.
- W1771099042 countsByYear W17710990422022 @default.
- W1771099042 countsByYear W17710990422023 @default.
- W1771099042 crossrefType "journal-article" @default.
- W1771099042 hasAuthorship W1771099042A5039500726 @default.
- W1771099042 hasAuthorship W1771099042A5042865170 @default.
- W1771099042 hasAuthorship W1771099042A5046372853 @default.
- W1771099042 hasAuthorship W1771099042A5061681110 @default.
- W1771099042 hasBestOaLocation W17710990421 @default.
- W1771099042 hasConcept C104317684 @default.
- W1771099042 hasConcept C105795698 @default.
- W1771099042 hasConcept C107130276 @default.
- W1771099042 hasConcept C119043178 @default.
- W1771099042 hasConcept C126322002 @default.
- W1771099042 hasConcept C142052008 @default.
- W1771099042 hasConcept C142724271 @default.
- W1771099042 hasConcept C144024400 @default.
- W1771099042 hasConcept C149923435 @default.
- W1771099042 hasConcept C152877465 @default.
- W1771099042 hasConcept C158600405 @default.
- W1771099042 hasConcept C3020637660 @default.
- W1771099042 hasConcept C33923547 @default.
- W1771099042 hasConcept C44249647 @default.
- W1771099042 hasConcept C53059260 @default.
- W1771099042 hasConcept C55493867 @default.
- W1771099042 hasConcept C63479239 @default.
- W1771099042 hasConcept C71924100 @default.
- W1771099042 hasConcept C77350462 @default.
- W1771099042 hasConcept C83546350 @default.
- W1771099042 hasConcept C86803240 @default.
- W1771099042 hasConcept C99454951 @default.
- W1771099042 hasConceptScore W1771099042C104317684 @default.
- W1771099042 hasConceptScore W1771099042C105795698 @default.
- W1771099042 hasConceptScore W1771099042C107130276 @default.
- W1771099042 hasConceptScore W1771099042C119043178 @default.
- W1771099042 hasConceptScore W1771099042C126322002 @default.
- W1771099042 hasConceptScore W1771099042C142052008 @default.
- W1771099042 hasConceptScore W1771099042C142724271 @default.
- W1771099042 hasConceptScore W1771099042C144024400 @default.
- W1771099042 hasConceptScore W1771099042C149923435 @default.
- W1771099042 hasConceptScore W1771099042C152877465 @default.
- W1771099042 hasConceptScore W1771099042C158600405 @default.
- W1771099042 hasConceptScore W1771099042C3020637660 @default.
- W1771099042 hasConceptScore W1771099042C33923547 @default.
- W1771099042 hasConceptScore W1771099042C44249647 @default.
- W1771099042 hasConceptScore W1771099042C53059260 @default.
- W1771099042 hasConceptScore W1771099042C55493867 @default.
- W1771099042 hasConceptScore W1771099042C63479239 @default.
- W1771099042 hasConceptScore W1771099042C71924100 @default.
- W1771099042 hasConceptScore W1771099042C77350462 @default.
- W1771099042 hasConceptScore W1771099042C83546350 @default.
- W1771099042 hasConceptScore W1771099042C86803240 @default.