Matches in SemOpenAlex for { <https://semopenalex.org/work/W177132322> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W177132322 abstract "Various kinds of e-learning systems, such as Massively Open Online Courses and intelligent tutoring systems, are now producing amounts of feature-rich data from students solving items at different levels of proficiency over time. To analyze such data, researchers often use Knowledge Tracing [4], a 20-year old method that has become the de-facto standard for inferring student’s knowledge from performance data. Knowledge Tracing uses Hidden Markov Models (HMM) to estimate the latent cognitive state (student’s knowledge) from the student’s performance answering items. Since the original Knowledge Tracing formulation does not allow to model general features, a considerable amount of research has focused on ad-hoc modifications to the Knowledge Tracing algorithm to enable modeling a specific feature of interest. This has led to a plethora of different Knowledge Tracing reformulations for very specific purposes. For example, Pardos et al. [5] proposed a new model to measure the effect of students’ individual characteristics, Beck et al. [2] modified Knowledge Tracing to assess the effect of help in a tutor system, and Xu and Mostow [7] proposed a new model that allows measuring the effect of subskills. These ad hoc models are successful for their own specific purpose, but they do not generalize to arbitrary features. Other student modeling methods which allow more flexible features have been proposed. For example, Performance Factor Analysis [6] uses logistic regression to model arbitrary features, but unfortunately it does not make inferences of whether the student has learned a skill. We present FAST (Feature-Aware Student knowledge Tracing), a novel method that allows general features into Knowledge Tracing. FAST combines Performance Factor Analysis (logistic regression) with Knowledge Tracing, by leveraging on previous work on unsupervised learning with features [3]. Therefore, FAST is able to infer student’s knowledge, like Knowledge Tracing does, while also allowing for arbitrary features, like Performance Factor Analysis does. FAST allows general features into Knowledge Tracing by replacing the generative emission probabilities (often called guess and slip probabilities) with logistic regression [3], so that these probabilities can change with time to infer student’s knowledge. FAST allows arbitrary features to train the logistic regression model and the HMM jointly. Training the parameters simultaneously enables FAST to learn from the features. This differs from using regression to analyze the slip and guess probabilities [1]. To validate our approach, we use data collected from real students interacting with a tutor. We present experimental results comparing FAST with Knowledge Tracing and Performance Factor Analysis. We conduct experiments with our model using features like item difficulty, prior successes and failures of a student for the skill (or multiple skills) associated with the item, according to the formulation of Performance Factor Analysis." @default.
- W177132322 created "2016-06-24" @default.
- W177132322 creator A5017908544 @default.
- W177132322 creator A5037674585 @default.
- W177132322 creator A5052681948 @default.
- W177132322 date "2013-12-10" @default.
- W177132322 modified "2023-09-27" @default.
- W177132322 title "FAST: Feature-Aware Student Knowledge Tracing" @default.
- W177132322 cites W1593700574 @default.
- W177132322 cites W1596401170 @default.
- W177132322 cites W1597703949 @default.
- W177132322 cites W1909733559 @default.
- W177132322 cites W2117122404 @default.
- W177132322 cites W2396412769 @default.
- W177132322 hasPublicationYear "2013" @default.
- W177132322 type Work @default.
- W177132322 sameAs 177132322 @default.
- W177132322 citedByCount "3" @default.
- W177132322 countsByYear W1771323222014 @default.
- W177132322 countsByYear W1771323222020 @default.
- W177132322 crossrefType "journal-article" @default.
- W177132322 hasAuthorship W177132322A5017908544 @default.
- W177132322 hasAuthorship W177132322A5037674585 @default.
- W177132322 hasAuthorship W177132322A5052681948 @default.
- W177132322 hasConcept C119857082 @default.
- W177132322 hasConcept C138673069 @default.
- W177132322 hasConcept C138885662 @default.
- W177132322 hasConcept C154945302 @default.
- W177132322 hasConcept C199360897 @default.
- W177132322 hasConcept C2522767166 @default.
- W177132322 hasConcept C2776401178 @default.
- W177132322 hasConcept C2777598771 @default.
- W177132322 hasConcept C41008148 @default.
- W177132322 hasConcept C41895202 @default.
- W177132322 hasConceptScore W177132322C119857082 @default.
- W177132322 hasConceptScore W177132322C138673069 @default.
- W177132322 hasConceptScore W177132322C138885662 @default.
- W177132322 hasConceptScore W177132322C154945302 @default.
- W177132322 hasConceptScore W177132322C199360897 @default.
- W177132322 hasConceptScore W177132322C2522767166 @default.
- W177132322 hasConceptScore W177132322C2776401178 @default.
- W177132322 hasConceptScore W177132322C2777598771 @default.
- W177132322 hasConceptScore W177132322C41008148 @default.
- W177132322 hasConceptScore W177132322C41895202 @default.
- W177132322 hasLocation W1771323221 @default.
- W177132322 hasOpenAccess W177132322 @default.
- W177132322 hasPrimaryLocation W1771323221 @default.
- W177132322 hasRelatedWork W1495223299 @default.
- W177132322 hasRelatedWork W2550213996 @default.
- W177132322 hasRelatedWork W2617195669 @default.
- W177132322 hasRelatedWork W2766505560 @default.
- W177132322 hasRelatedWork W2771404308 @default.
- W177132322 hasRelatedWork W2773553693 @default.
- W177132322 hasRelatedWork W2810053714 @default.
- W177132322 hasRelatedWork W2895826831 @default.
- W177132322 hasRelatedWork W2903522813 @default.
- W177132322 hasRelatedWork W2943013621 @default.
- W177132322 hasRelatedWork W2963625192 @default.
- W177132322 hasRelatedWork W3000598631 @default.
- W177132322 hasRelatedWork W3000862528 @default.
- W177132322 hasRelatedWork W3010644870 @default.
- W177132322 hasRelatedWork W3161242088 @default.
- W177132322 hasRelatedWork W3162461815 @default.
- W177132322 hasRelatedWork W3180259548 @default.
- W177132322 hasRelatedWork W3199707888 @default.
- W177132322 hasRelatedWork W3212990606 @default.
- W177132322 hasRelatedWork W1902813296 @default.
- W177132322 isParatext "false" @default.
- W177132322 isRetracted "false" @default.
- W177132322 magId "177132322" @default.
- W177132322 workType "article" @default.