Matches in SemOpenAlex for { <https://semopenalex.org/work/W177184423> ?p ?o ?g. }
- W177184423 endingPage "333" @default.
- W177184423 startingPage "283" @default.
- W177184423 abstract "Kernel methods are a class of non-parametric learning techniques relying on kernels. A kernel generalizes dot products to arbitrary domains and can thus be seen as a similarity measure between data points with complex structures. The use of kernels allows to decouple the representation of the data from the specific learning algorithm, provided it can be defined in terms of distance or similarity between instances. Under this unifying formalism a wide range of methods have been developed, dealing with binary and multiclass classification, regression, ranking, clustering and novelty detection to name a few. Recent developments include statistical tests of dependency and alignments between related domains, such as documents written in different languages. Key to the success of any kernel method is the definition of an appropriate kernel for the data at hand. A well-designed kernel should capture the aspects characterizing similar instances while being computationally efficient. Building on the seminal work by D. Haussler on convolution kernels, a vast literature on kernels for structured data has arisen. Kernels have been designed for sequences, trees and graphs, as well as arbitrary relational data represented in first or higher order logic. From the representational viewpoint, this allowed to address one of the main limitations of statistical learning approaches, namely the difficulty to deal with complex domain knowledge. Interesting connections between the complementary fields of statistical and symbolic learning have arisen as one of the consequences. Another interesting connection made possible by kernels is between generative and discriminative learning. Here data are represented with generative models and appropriate kernels are built on top of them to be used in a discriminative setting." @default.
- W177184423 created "2016-06-24" @default.
- W177184423 creator A5066187890 @default.
- W177184423 date "2013-01-01" @default.
- W177184423 modified "2023-09-24" @default.
- W177184423 title "Kernel Methods for Structured Data" @default.
- W177184423 cites W1510073064 @default.
- W177184423 cites W1512098439 @default.
- W177184423 cites W1515020792 @default.
- W177184423 cites W1587871245 @default.
- W177184423 cites W179694669 @default.
- W177184423 cites W1816257748 @default.
- W177184423 cites W1861597095 @default.
- W177184423 cites W1966347620 @default.
- W177184423 cites W1970789124 @default.
- W177184423 cites W1986280275 @default.
- W177184423 cites W1987902506 @default.
- W177184423 cites W2015904350 @default.
- W177184423 cites W2039444222 @default.
- W177184423 cites W2042313354 @default.
- W177184423 cites W2059513841 @default.
- W177184423 cites W2070272652 @default.
- W177184423 cites W2087347434 @default.
- W177184423 cites W2100294832 @default.
- W177184423 cites W2103914106 @default.
- W177184423 cites W2110668981 @default.
- W177184423 cites W2121817315 @default.
- W177184423 cites W2125838338 @default.
- W177184423 cites W2125865219 @default.
- W177184423 cites W2131297983 @default.
- W177184423 cites W2132005946 @default.
- W177184423 cites W2132870739 @default.
- W177184423 cites W2137262074 @default.
- W177184423 cites W2161920802 @default.
- W177184423 cites W2167304375 @default.
- W177184423 cites W2169945149 @default.
- W177184423 cites W2283504545 @default.
- W177184423 cites W3101749733 @default.
- W177184423 cites W3144386677 @default.
- W177184423 cites W4206044717 @default.
- W177184423 cites W4211049957 @default.
- W177184423 cites W4245668478 @default.
- W177184423 cites W4293249558 @default.
- W177184423 cites W4298876635 @default.
- W177184423 cites W4313169793 @default.
- W177184423 cites W4376848346 @default.
- W177184423 cites W938539187 @default.
- W177184423 doi "https://doi.org/10.1007/978-3-642-36657-4_9" @default.
- W177184423 hasPublicationYear "2013" @default.
- W177184423 type Work @default.
- W177184423 sameAs 177184423 @default.
- W177184423 citedByCount "1" @default.
- W177184423 countsByYear W1771844232014 @default.
- W177184423 crossrefType "book-chapter" @default.
- W177184423 hasAuthorship W177184423A5066187890 @default.
- W177184423 hasBestOaLocation W1771844232 @default.
- W177184423 hasConcept C114614502 @default.
- W177184423 hasConcept C119857082 @default.
- W177184423 hasConcept C122280245 @default.
- W177184423 hasConcept C12267149 @default.
- W177184423 hasConcept C134517425 @default.
- W177184423 hasConcept C140417398 @default.
- W177184423 hasConcept C154945302 @default.
- W177184423 hasConcept C33923547 @default.
- W177184423 hasConcept C41008148 @default.
- W177184423 hasConcept C55851704 @default.
- W177184423 hasConcept C73555534 @default.
- W177184423 hasConcept C74193536 @default.
- W177184423 hasConcept C80444323 @default.
- W177184423 hasConcept C97931131 @default.
- W177184423 hasConceptScore W177184423C114614502 @default.
- W177184423 hasConceptScore W177184423C119857082 @default.
- W177184423 hasConceptScore W177184423C122280245 @default.
- W177184423 hasConceptScore W177184423C12267149 @default.
- W177184423 hasConceptScore W177184423C134517425 @default.
- W177184423 hasConceptScore W177184423C140417398 @default.
- W177184423 hasConceptScore W177184423C154945302 @default.
- W177184423 hasConceptScore W177184423C33923547 @default.
- W177184423 hasConceptScore W177184423C41008148 @default.
- W177184423 hasConceptScore W177184423C55851704 @default.
- W177184423 hasConceptScore W177184423C73555534 @default.
- W177184423 hasConceptScore W177184423C74193536 @default.
- W177184423 hasConceptScore W177184423C80444323 @default.
- W177184423 hasConceptScore W177184423C97931131 @default.
- W177184423 hasLocation W1771844231 @default.
- W177184423 hasLocation W1771844232 @default.
- W177184423 hasOpenAccess W177184423 @default.
- W177184423 hasPrimaryLocation W1771844231 @default.
- W177184423 hasRelatedWork W1489359949 @default.
- W177184423 hasRelatedWork W1603793793 @default.
- W177184423 hasRelatedWork W1983263273 @default.
- W177184423 hasRelatedWork W2092483655 @default.
- W177184423 hasRelatedWork W2898882859 @default.
- W177184423 hasRelatedWork W2963372274 @default.
- W177184423 hasRelatedWork W3013206934 @default.
- W177184423 hasRelatedWork W4291669689 @default.
- W177184423 hasRelatedWork W4294351650 @default.
- W177184423 hasRelatedWork W4300176214 @default.