Matches in SemOpenAlex for { <https://semopenalex.org/work/W17726191> ?p ?o ?g. }
- W17726191 abstract "A combinatorial optimization problem is an optimization problem where the number of possible solutions are finite and grow combinatorially with the problem size. Combinatorial problems exist everywhere in industrial systems. This thesis focuses on solving three such problems which arise within two different areas where industrial computer systems are often used. Within embedded systems and real-time systems, we investigate the problems of allocating stack memory for an system where a shared stacks may be used, and of estimating the highest response time of a task in a system of industrial complexity. We propose a number of different algorithms to compute safe upper bounds on run-time stack usage whenever the system supports stack sharing. The algorithms have in common that they can exploit commonly-available information regarding timing behaviour of the tasks in the system. Given upper bounds on the individual stack usage of the tasks, it is possible to estimate the worst-case stack behaviour by analysing the possible and impossible preemption patterns. Using relations on offset and precedences, we form a preemption graph, which is further analysed to find safe upper-bounds on the maximal preemptions chain in the system. For the special case where all tasks exist in a single static schedule and share a single stack, we propose a polynomial algorithm to solve the problem. For generalizations of this problem, we propose an exact branch-and-bound algorithm for smaller problems and a polynomial heuristic algorithm for cases where the branch-and-bound algorithm fails to find a solution in reasonable time. All algorithms are evaluated in comprehensive experimental studies. The polynomial algorithm is implemented and shipped in the developer tool set for a commercial real-time operating system, Rubus OS. The second problem we study in the thesis is how to estimate the highest response time of a specified task in a complex industrial real-time system. The response-time analysis is done using a best-effort approach, where a detailed model of the system is simulated on input constructed using a local search procedure. In an evaluation on three different systems we can see that the new algorithm were able to produce higher response times much faster than what has previously been possible. Since the analysis is based on simulation and measurement, the results are not safe in the sense that they are always higher or equal to the true response time of the system. The value of the method lies instead in that it makes it possible to analyse complex industrial systems which cannot be analysed accurately using existing safe approaches. The third problem is in the area of maintenance planning, and focus on how to dynamically plan maintenance for industrial systems. Within this area we have focused on industrial gas turbines and rail vehicles. We have developed algorithms and a planning tool which can be used to plan maintenance for gas turbines and other stationary machinery. In such problems, it is often the case that performing several maintenance actions at the same time is beneficial, since many of these jobs can be done in parallel, which reduces the total downtime of the unit. The core of the problem is therefore how to (or how not to) group maintenance activities so that a composite cost due to spare parts, labor and loss of production due to downtime is minimized. We allow each machine to have individual schedules for each component in the system. For rail vehicles, we have evaluated the effect of replanning maintenance in the case where the component maintenance deadline is set to reflect a maximum risk of breakdown in a Gaussian failure distribution. In such a model, we show by simulation that replanning of maintenance can reduce the number of maintenance stops when the variance and expected value of the distribution are increased. For the gas turbine maintenance planning problem, we have evaluated the planning software on a real-world scenario from the oil and gas industry and compared it to the solutions obtained from a commercial integer programming solver. It is estimated that the availability increase from using our planning software is between 0.5 to 1.0 %, which is substantial considering that availability is currently already at 97-98 %." @default.
- W17726191 created "2016-06-24" @default.
- W17726191 creator A5005632147 @default.
- W17726191 creator A5021919739 @default.
- W17726191 creator A5026815194 @default.
- W17726191 creator A5047385412 @default.
- W17726191 creator A5064297162 @default.
- W17726191 date "2009-08-01" @default.
- W17726191 modified "2023-09-23" @default.
- W17726191 title "Best-Effort Simulation-Based Timing Analysis using Hill-Climbing with Random Restarts" @default.
- W17726191 cites W1522517002 @default.
- W17726191 cites W1639032689 @default.
- W17726191 cites W1971446127 @default.
- W17726191 cites W2024060531 @default.
- W17726191 cites W2032742044 @default.
- W17726191 cites W2046254203 @default.
- W17726191 cites W2053325367 @default.
- W17726191 cites W2076285066 @default.
- W17726191 cites W2086061827 @default.
- W17726191 cites W2122410182 @default.
- W17726191 cites W2123763420 @default.
- W17726191 cites W2128837452 @default.
- W17726191 cites W2135096141 @default.
- W17726191 cites W2159433799 @default.
- W17726191 cites W2165201363 @default.
- W17726191 cites W2262960161 @default.
- W17726191 cites W2293624369 @default.
- W17726191 cites W2339500526 @default.
- W17726191 cites W2904250082 @default.
- W17726191 cites W594381625 @default.
- W17726191 hasPublicationYear "2009" @default.
- W17726191 type Work @default.
- W17726191 sameAs 17726191 @default.
- W17726191 citedByCount "3" @default.
- W17726191 countsByYear W177261912012 @default.
- W17726191 countsByYear W177261912016 @default.
- W17726191 crossrefType "proceedings-article" @default.
- W17726191 hasAuthorship W17726191A5005632147 @default.
- W17726191 hasAuthorship W17726191A5021919739 @default.
- W17726191 hasAuthorship W17726191A5026815194 @default.
- W17726191 hasAuthorship W17726191A5047385412 @default.
- W17726191 hasAuthorship W17726191A5064297162 @default.
- W17726191 hasConcept C111919701 @default.
- W17726191 hasConcept C11413529 @default.
- W17726191 hasConcept C126255220 @default.
- W17726191 hasConcept C134306372 @default.
- W17726191 hasConcept C154945302 @default.
- W17726191 hasConcept C165696696 @default.
- W17726191 hasConcept C173801870 @default.
- W17726191 hasConcept C175291020 @default.
- W17726191 hasConcept C199360897 @default.
- W17726191 hasConcept C206729178 @default.
- W17726191 hasConcept C206952183 @default.
- W17726191 hasConcept C311688 @default.
- W17726191 hasConcept C33923547 @default.
- W17726191 hasConcept C38652104 @default.
- W17726191 hasConcept C41008148 @default.
- W17726191 hasConcept C68387754 @default.
- W17726191 hasConcept C77553402 @default.
- W17726191 hasConcept C80444323 @default.
- W17726191 hasConceptScore W17726191C111919701 @default.
- W17726191 hasConceptScore W17726191C11413529 @default.
- W17726191 hasConceptScore W17726191C126255220 @default.
- W17726191 hasConceptScore W17726191C134306372 @default.
- W17726191 hasConceptScore W17726191C154945302 @default.
- W17726191 hasConceptScore W17726191C165696696 @default.
- W17726191 hasConceptScore W17726191C173801870 @default.
- W17726191 hasConceptScore W17726191C175291020 @default.
- W17726191 hasConceptScore W17726191C199360897 @default.
- W17726191 hasConceptScore W17726191C206729178 @default.
- W17726191 hasConceptScore W17726191C206952183 @default.
- W17726191 hasConceptScore W17726191C311688 @default.
- W17726191 hasConceptScore W17726191C33923547 @default.
- W17726191 hasConceptScore W17726191C38652104 @default.
- W17726191 hasConceptScore W17726191C41008148 @default.
- W17726191 hasConceptScore W17726191C68387754 @default.
- W17726191 hasConceptScore W17726191C77553402 @default.
- W17726191 hasConceptScore W17726191C80444323 @default.
- W17726191 hasLocation W177261911 @default.
- W17726191 hasOpenAccess W17726191 @default.
- W17726191 hasPrimaryLocation W177261911 @default.
- W17726191 hasRelatedWork W17141523 @default.
- W17726191 hasRelatedWork W1971446127 @default.
- W17726191 hasRelatedWork W1996476862 @default.
- W17726191 hasRelatedWork W2032742044 @default.
- W17726191 hasRelatedWork W2086061827 @default.
- W17726191 hasRelatedWork W2135096141 @default.
- W17726191 hasRelatedWork W2140948502 @default.
- W17726191 hasRelatedWork W2151851196 @default.
- W17726191 hasRelatedWork W2245229877 @default.
- W17726191 hasRelatedWork W2262960161 @default.
- W17726191 hasRelatedWork W2588992289 @default.
- W17726191 hasRelatedWork W2606568103 @default.
- W17726191 hasRelatedWork W2626451796 @default.
- W17726191 hasRelatedWork W2981053853 @default.
- W17726191 hasRelatedWork W3099899879 @default.
- W17726191 hasRelatedWork W3133821530 @default.
- W17726191 hasRelatedWork W3196817534 @default.
- W17726191 hasRelatedWork W594381625 @default.
- W17726191 hasRelatedWork W977959367 @default.