Matches in SemOpenAlex for { <https://semopenalex.org/work/W1774806619> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1774806619 abstract "Objective: Gender Classification is one of the most important applications in Artificial Intelligent Systems. The objective of this research work is to classify the human gender based on multiple level decisions. Since many years, a great deal of effort has been made to gender recognition from face images. It is not straightforward to achieve the same accuracy level in real-world environment. The proposed approach can give solution to these problems. Methods: In this paper, multiple levels hierarchical techniques based on 3 Sigma control limits on Neural Network is applied for gender recognition to get the desired objectives. In order to achieve this, the proposed algorithm considers the Artificial Neural Network as basic classifier. Here, in Initial Level Hierarchy, facial features are given as input to the Neural Network. Then, the output represents the gender classification from the Neural Network is extracted. The next level of classification can be done in Core Hierarchical Decision. Findings: This paper provides an effective approach that classifies human gender in computer vision applications. In the proposed research, a Feed Forward Neural Network works at the primary level, based on the outcome of the primary level, the further classification is done in the next higher level hierarchically. In this research, there are 1000 gray-scale with 256 gray levels facial images used for experiment. Each image size is normalized to 64×64. Among the 1000 experimental images, 800 images are used as training data, and the remaining are used as test images. Prediction of the gender is more accurate and effectively achieved the success rate of 95 percent. Applications: The proposed algorithm can play an important role in many computer vision based applications such as human-computer interaction, surveillance, biometrics, demographic studies and targeted advertising." @default.
- W1774806619 created "2016-06-24" @default.
- W1774806619 creator A5008826434 @default.
- W1774806619 creator A5084823359 @default.
- W1774806619 date "2015-01-20" @default.
- W1774806619 modified "2023-09-27" @default.
- W1774806619 title "Multiple Hierarchical Technique to Predict the Gender of a Person based on 3 Sigma Control Limits on Neural Network" @default.
- W1774806619 cites W1480841472 @default.
- W1774806619 cites W1593989786 @default.
- W1774806619 cites W1983079504 @default.
- W1774806619 cites W2014877967 @default.
- W1774806619 cites W2019621046 @default.
- W1774806619 cites W2022338201 @default.
- W1774806619 cites W2060772373 @default.
- W1774806619 cites W2084300814 @default.
- W1774806619 cites W2101056529 @default.
- W1774806619 cites W2101392314 @default.
- W1774806619 cites W2103107894 @default.
- W1774806619 cites W2106488920 @default.
- W1774806619 cites W2115716836 @default.
- W1774806619 cites W2119486225 @default.
- W1774806619 cites W2123497994 @default.
- W1774806619 cites W2147278565 @default.
- W1774806619 cites W2167015621 @default.
- W1774806619 cites W2167793923 @default.
- W1774806619 cites W2169069957 @default.
- W1774806619 cites W2328737873 @default.
- W1774806619 cites W2539903509 @default.
- W1774806619 cites W2546169785 @default.
- W1774806619 cites W3169507310 @default.
- W1774806619 cites W2186847717 @default.
- W1774806619 doi "https://doi.org/10.17485/ijst/2015/v8i14/72788" @default.
- W1774806619 hasPublicationYear "2015" @default.
- W1774806619 type Work @default.
- W1774806619 sameAs 1774806619 @default.
- W1774806619 citedByCount "2" @default.
- W1774806619 countsByYear W17748066192015 @default.
- W1774806619 countsByYear W17748066192016 @default.
- W1774806619 crossrefType "journal-article" @default.
- W1774806619 hasAuthorship W1774806619A5008826434 @default.
- W1774806619 hasAuthorship W1774806619A5084823359 @default.
- W1774806619 hasBestOaLocation W17748066191 @default.
- W1774806619 hasConcept C119857082 @default.
- W1774806619 hasConcept C153180895 @default.
- W1774806619 hasConcept C154945302 @default.
- W1774806619 hasConcept C162324750 @default.
- W1774806619 hasConcept C31170391 @default.
- W1774806619 hasConcept C34447519 @default.
- W1774806619 hasConcept C41008148 @default.
- W1774806619 hasConcept C50644808 @default.
- W1774806619 hasConcept C95623464 @default.
- W1774806619 hasConceptScore W1774806619C119857082 @default.
- W1774806619 hasConceptScore W1774806619C153180895 @default.
- W1774806619 hasConceptScore W1774806619C154945302 @default.
- W1774806619 hasConceptScore W1774806619C162324750 @default.
- W1774806619 hasConceptScore W1774806619C31170391 @default.
- W1774806619 hasConceptScore W1774806619C34447519 @default.
- W1774806619 hasConceptScore W1774806619C41008148 @default.
- W1774806619 hasConceptScore W1774806619C50644808 @default.
- W1774806619 hasConceptScore W1774806619C95623464 @default.
- W1774806619 hasLocation W17748066191 @default.
- W1774806619 hasOpenAccess W1774806619 @default.
- W1774806619 hasPrimaryLocation W17748066191 @default.
- W1774806619 hasRelatedWork W1525582549 @default.
- W1774806619 hasRelatedWork W1557476276 @default.
- W1774806619 hasRelatedWork W1602270207 @default.
- W1774806619 hasRelatedWork W2030280642 @default.
- W1774806619 hasRelatedWork W2046444225 @default.
- W1774806619 hasRelatedWork W2089862258 @default.
- W1774806619 hasRelatedWork W2094348475 @default.
- W1774806619 hasRelatedWork W2113050263 @default.
- W1774806619 hasRelatedWork W2125513082 @default.
- W1774806619 hasRelatedWork W2129595603 @default.
- W1774806619 hasRelatedWork W2157380814 @default.
- W1774806619 hasRelatedWork W2158352125 @default.
- W1774806619 hasRelatedWork W2328153685 @default.
- W1774806619 hasRelatedWork W2539587520 @default.
- W1774806619 hasRelatedWork W2770637343 @default.
- W1774806619 hasRelatedWork W2998255730 @default.
- W1774806619 hasRelatedWork W3011996889 @default.
- W1774806619 hasRelatedWork W3214242408 @default.
- W1774806619 hasRelatedWork W653598020 @default.
- W1774806619 hasRelatedWork W1966635105 @default.
- W1774806619 isParatext "false" @default.
- W1774806619 isRetracted "false" @default.
- W1774806619 magId "1774806619" @default.
- W1774806619 workType "article" @default.