Matches in SemOpenAlex for { <https://semopenalex.org/work/W1775629176> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1775629176 abstract "The reconstruction of geometric shapes plays an important role in many biomedical applications. One example is the patient-specific, computer-aided planning of complex interventions, which requires the generation of explicitly represented geometric models of anatomical structures from medical image data. Only solutions that require minimal interaction by medical personnel are likely to enter clinical routine. Another example is the planning of surgical corrections of deformities where the target shape is unknown. Surgeons are often forced to resort to subjective criteria. These applications still pose highly challenging reconstruction problems, which are addressed in this thesis. The fundamental hypothesis, pursued in this thesis, is that the problems can be solved by incorporating a-priori knowledge about shape and other application-specific characteristics. Here, we focus mainly on the aspect of geometric shape analysis. The basic idea is to capture the most essential variations of a certain class of geometric objects via statistical shape models, which model typical features contained in a given population, and restrict the outcome of a reconstruction algorithm (more or less) to the space spanned by such models. A fundamental prerequisite for performing statistical shape analysis on a set of different objects is the identification of corresponding points on their associated surfaces. This problem is particularly difficult to solve if the shapes stem from different individuals. The reason lies in the basic difficulty of defining suitable measures of similarity. In this thesis, we divide the correspondence problem into feature and non-feature matching. The feature part depends on the application, while the non-feature part can be characterized by a purely geometric description. We propose two different approaches. The first approach has proved useful in many applications. Yet, it suffers from some practical limitations and does not yield a measure of similarity. Our second, variational, approach is designed to overcome these limitations. In it, we propose to minimize an invariant stretching measure, constrained by previously computed features. An important property, which sets our method apart from previous work, is that it does not require the computation of a global surface parameterization." @default.
- W1775629176 created "2016-06-24" @default.
- W1775629176 creator A5078148971 @default.
- W1775629176 date "2008-01-01" @default.
- W1775629176 modified "2023-09-24" @default.
- W1775629176 title "Variational and statistical shape modeling for 3D geometry reconstruction" @default.
- W1775629176 doi "https://doi.org/10.17169/refubium-17326" @default.
- W1775629176 hasPublicationYear "2008" @default.
- W1775629176 type Work @default.
- W1775629176 sameAs 1775629176 @default.
- W1775629176 citedByCount "5" @default.
- W1775629176 countsByYear W17756291762015 @default.
- W1775629176 countsByYear W17756291762017 @default.
- W1775629176 crossrefType "dissertation" @default.
- W1775629176 hasAuthorship W1775629176A5078148971 @default.
- W1775629176 hasConcept C103278499 @default.
- W1775629176 hasConcept C105795698 @default.
- W1775629176 hasConcept C111472728 @default.
- W1775629176 hasConcept C112604564 @default.
- W1775629176 hasConcept C11413529 @default.
- W1775629176 hasConcept C115961682 @default.
- W1775629176 hasConcept C116834253 @default.
- W1775629176 hasConcept C129641003 @default.
- W1775629176 hasConcept C138885662 @default.
- W1775629176 hasConcept C144024400 @default.
- W1775629176 hasConcept C149923435 @default.
- W1775629176 hasConcept C154945302 @default.
- W1775629176 hasConcept C165064840 @default.
- W1775629176 hasConcept C199360897 @default.
- W1775629176 hasConcept C2524010 @default.
- W1775629176 hasConcept C2776401178 @default.
- W1775629176 hasConcept C2908647359 @default.
- W1775629176 hasConcept C33923547 @default.
- W1775629176 hasConcept C41008148 @default.
- W1775629176 hasConcept C41895202 @default.
- W1775629176 hasConcept C59822182 @default.
- W1775629176 hasConcept C7305733 @default.
- W1775629176 hasConcept C75553542 @default.
- W1775629176 hasConcept C86803240 @default.
- W1775629176 hasConcept C89600930 @default.
- W1775629176 hasConcept C97686452 @default.
- W1775629176 hasConceptScore W1775629176C103278499 @default.
- W1775629176 hasConceptScore W1775629176C105795698 @default.
- W1775629176 hasConceptScore W1775629176C111472728 @default.
- W1775629176 hasConceptScore W1775629176C112604564 @default.
- W1775629176 hasConceptScore W1775629176C11413529 @default.
- W1775629176 hasConceptScore W1775629176C115961682 @default.
- W1775629176 hasConceptScore W1775629176C116834253 @default.
- W1775629176 hasConceptScore W1775629176C129641003 @default.
- W1775629176 hasConceptScore W1775629176C138885662 @default.
- W1775629176 hasConceptScore W1775629176C144024400 @default.
- W1775629176 hasConceptScore W1775629176C149923435 @default.
- W1775629176 hasConceptScore W1775629176C154945302 @default.
- W1775629176 hasConceptScore W1775629176C165064840 @default.
- W1775629176 hasConceptScore W1775629176C199360897 @default.
- W1775629176 hasConceptScore W1775629176C2524010 @default.
- W1775629176 hasConceptScore W1775629176C2776401178 @default.
- W1775629176 hasConceptScore W1775629176C2908647359 @default.
- W1775629176 hasConceptScore W1775629176C33923547 @default.
- W1775629176 hasConceptScore W1775629176C41008148 @default.
- W1775629176 hasConceptScore W1775629176C41895202 @default.
- W1775629176 hasConceptScore W1775629176C59822182 @default.
- W1775629176 hasConceptScore W1775629176C7305733 @default.
- W1775629176 hasConceptScore W1775629176C75553542 @default.
- W1775629176 hasConceptScore W1775629176C86803240 @default.
- W1775629176 hasConceptScore W1775629176C89600930 @default.
- W1775629176 hasConceptScore W1775629176C97686452 @default.
- W1775629176 hasLocation W17756291761 @default.
- W1775629176 hasOpenAccess W1775629176 @default.
- W1775629176 hasPrimaryLocation W17756291761 @default.
- W1775629176 hasRelatedWork W1495241956 @default.
- W1775629176 hasRelatedWork W1582964304 @default.
- W1775629176 hasRelatedWork W1602943713 @default.
- W1775629176 hasRelatedWork W1922214832 @default.
- W1775629176 hasRelatedWork W1978974292 @default.
- W1775629176 hasRelatedWork W2012385660 @default.
- W1775629176 hasRelatedWork W2031555840 @default.
- W1775629176 hasRelatedWork W2033189232 @default.
- W1775629176 hasRelatedWork W2034452450 @default.
- W1775629176 hasRelatedWork W2054782700 @default.
- W1775629176 hasRelatedWork W2118622097 @default.
- W1775629176 hasRelatedWork W2160698381 @default.
- W1775629176 hasRelatedWork W2309404931 @default.
- W1775629176 hasRelatedWork W2560722161 @default.
- W1775629176 hasRelatedWork W2605315904 @default.
- W1775629176 hasRelatedWork W28097056 @default.
- W1775629176 hasRelatedWork W2962974043 @default.
- W1775629176 hasRelatedWork W2969824030 @default.
- W1775629176 hasRelatedWork W3172991892 @default.
- W1775629176 hasRelatedWork W35396819 @default.
- W1775629176 isParatext "false" @default.
- W1775629176 isRetracted "false" @default.
- W1775629176 magId "1775629176" @default.
- W1775629176 workType "dissertation" @default.