Matches in SemOpenAlex for { <https://semopenalex.org/work/W1775802647> ?p ?o ?g. }
- W1775802647 abstract "Abstract Background Systems are considered legacy when their maintenance costs raise to unmanageable levels, but they still deliver valuable benefits for companies. One intrinsic problem of this kind of system is the presence of crosscutting concerns in their architecture, hindering its comprehension and evolution. Architecture-driven modernization (ADM) is the new generation of reengineering in which models are used as main artifacts during the whole process. Using ADM, it is possible to modernize legacy systems by remodularizing their concerns in a more modular shape. In this sense, the first step is the identification of source code elements that contribute to the implementation of those concerns, a process known as concern mining. Although there exist a number of concern mining approaches in the literature, none of them are devoted to ADM, leading individual groups to create their own ad hoc proprietary solutions. In this paper, we propose an approach called crosscutting-concern knowledge discovery meta-model (CCKDM) whose goal is to mine crosscutting concerns in ADM context. Our approach employs a combination of a concern library and a K -means clustering algorithm. Methods We have conducted an experimental study composed of two analyses. The first one aimed to identify the most suitable levenshtein values to apply the clustering algorithm. The second one aimed to check the recall and precision of our approach when compared to oracles and also to two other existing mining techniques (XScan and Timna) found in literature. Results The main result of this work is a combined mining approach for KDM that enables a concern-oriented modernization to be performed. As a secondary and more general result, this work shows that it is possible to adapt existing concern mining code-level approaches for being used in ADM processes and maintain the same level of precision and recall. Conclusions By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the identification of crosscutting concerns in KDM models and (ii) the results are similar or equal to other approaches." @default.
- W1775802647 created "2016-06-24" @default.
- W1775802647 creator A5004587880 @default.
- W1775802647 creator A5038101088 @default.
- W1775802647 creator A5077570341 @default.
- W1775802647 date "2015-08-01" @default.
- W1775802647 modified "2023-09-27" @default.
- W1775802647 title "A combined approach for concern identification in KDM models" @default.
- W1775802647 cites W1553637115 @default.
- W1775802647 cites W1575856026 @default.
- W1775802647 cites W1663082288 @default.
- W1775802647 cites W1835084766 @default.
- W1775802647 cites W1903851568 @default.
- W1775802647 cites W1952332000 @default.
- W1775802647 cites W1972635807 @default.
- W1775802647 cites W2001027224 @default.
- W1775802647 cites W2006267758 @default.
- W1775802647 cites W2013287706 @default.
- W1775802647 cites W2034920586 @default.
- W1775802647 cites W2039996613 @default.
- W1775802647 cites W2060152739 @default.
- W1775802647 cites W2061227608 @default.
- W1775802647 cites W2061851723 @default.
- W1775802647 cites W2062934519 @default.
- W1775802647 cites W2100013184 @default.
- W1775802647 cites W2101345573 @default.
- W1775802647 cites W2116226621 @default.
- W1775802647 cites W2118463894 @default.
- W1775802647 cites W2120449932 @default.
- W1775802647 cites W2124240378 @default.
- W1775802647 cites W2128288747 @default.
- W1775802647 cites W2130891967 @default.
- W1775802647 cites W2131543356 @default.
- W1775802647 cites W2136531538 @default.
- W1775802647 cites W2150952278 @default.
- W1775802647 cites W2151333671 @default.
- W1775802647 cites W2161995626 @default.
- W1775802647 cites W2171008953 @default.
- W1775802647 cites W2490354173 @default.
- W1775802647 cites W4230541083 @default.
- W1775802647 doi "https://doi.org/10.1186/s13173-015-0030-3" @default.
- W1775802647 hasPublicationYear "2015" @default.
- W1775802647 type Work @default.
- W1775802647 sameAs 1775802647 @default.
- W1775802647 citedByCount "6" @default.
- W1775802647 countsByYear W17758026472016 @default.
- W1775802647 countsByYear W17758026472018 @default.
- W1775802647 countsByYear W17758026472019 @default.
- W1775802647 countsByYear W17758026472020 @default.
- W1775802647 crossrefType "journal-article" @default.
- W1775802647 hasAuthorship W1775802647A5004587880 @default.
- W1775802647 hasAuthorship W1775802647A5038101088 @default.
- W1775802647 hasAuthorship W1775802647A5077570341 @default.
- W1775802647 hasBestOaLocation W17758026471 @default.
- W1775802647 hasConcept C101468663 @default.
- W1775802647 hasConcept C105446022 @default.
- W1775802647 hasConcept C112930515 @default.
- W1775802647 hasConcept C115903868 @default.
- W1775802647 hasConcept C116834253 @default.
- W1775802647 hasConcept C119857082 @default.
- W1775802647 hasConcept C124101348 @default.
- W1775802647 hasConcept C124670913 @default.
- W1775802647 hasConcept C127413603 @default.
- W1775802647 hasConcept C137335462 @default.
- W1775802647 hasConcept C149091818 @default.
- W1775802647 hasConcept C151730666 @default.
- W1775802647 hasConcept C174998907 @default.
- W1775802647 hasConcept C199360897 @default.
- W1775802647 hasConcept C207505557 @default.
- W1775802647 hasConcept C21547014 @default.
- W1775802647 hasConcept C2522767166 @default.
- W1775802647 hasConcept C2777561058 @default.
- W1775802647 hasConcept C2777904410 @default.
- W1775802647 hasConcept C2779343474 @default.
- W1775802647 hasConcept C29143872 @default.
- W1775802647 hasConcept C41008148 @default.
- W1775802647 hasConcept C59822182 @default.
- W1775802647 hasConcept C71924100 @default.
- W1775802647 hasConcept C73555534 @default.
- W1775802647 hasConcept C81669768 @default.
- W1775802647 hasConcept C85345410 @default.
- W1775802647 hasConcept C86803240 @default.
- W1775802647 hasConcept C98045186 @default.
- W1775802647 hasConceptScore W1775802647C101468663 @default.
- W1775802647 hasConceptScore W1775802647C105446022 @default.
- W1775802647 hasConceptScore W1775802647C112930515 @default.
- W1775802647 hasConceptScore W1775802647C115903868 @default.
- W1775802647 hasConceptScore W1775802647C116834253 @default.
- W1775802647 hasConceptScore W1775802647C119857082 @default.
- W1775802647 hasConceptScore W1775802647C124101348 @default.
- W1775802647 hasConceptScore W1775802647C124670913 @default.
- W1775802647 hasConceptScore W1775802647C127413603 @default.
- W1775802647 hasConceptScore W1775802647C137335462 @default.
- W1775802647 hasConceptScore W1775802647C149091818 @default.
- W1775802647 hasConceptScore W1775802647C151730666 @default.
- W1775802647 hasConceptScore W1775802647C174998907 @default.
- W1775802647 hasConceptScore W1775802647C199360897 @default.
- W1775802647 hasConceptScore W1775802647C207505557 @default.
- W1775802647 hasConceptScore W1775802647C21547014 @default.
- W1775802647 hasConceptScore W1775802647C2522767166 @default.