Matches in SemOpenAlex for { <https://semopenalex.org/work/W1777267699> ?p ?o ?g. }
- W1777267699 endingPage "111" @default.
- W1777267699 startingPage "90" @default.
- W1777267699 abstract "This work develops a generic framework, called the bag-of-paths (BoP), for link and network data analysis. The central idea is to assign a probability distribution on the set of all paths in a network. More precisely, a Gibbs-Boltzmann distribution is defined over a bag of paths in a network, that is, on a representation that considers all paths independently. We show that, under this distribution, the probability of drawing a path connecting two nodes can easily be computed in closed form by simple matrix inversion. This probability captures a notion of relatedness between nodes of the graph: two nodes are considered as highly related when they are connected by many, preferably low-cost, paths. As an application, two families of distances between nodes are derived from the BoP probabilities. Interestingly, the second distance family interpolates between the shortest path distance and the resistance distance. In addition, it extends the Bellman-Ford formula for computing the shortest path distance in order to integrate sub-optimal paths by simply replacing the minimum operator by the soft minimum operator. Experimental results on semi-supervised classification show that both of the new distance families are competitive with other state-of-the-art approaches. In addition to the distance measures studied in this paper, the bag-of-paths framework enables straightforward computation of many other relevant network measures." @default.
- W1777267699 created "2016-06-24" @default.
- W1777267699 creator A5001517214 @default.
- W1777267699 creator A5015460788 @default.
- W1777267699 creator A5059385158 @default.
- W1777267699 creator A5069766194 @default.
- W1777267699 creator A5080884576 @default.
- W1777267699 date "2017-06-01" @default.
- W1777267699 modified "2023-10-17" @default.
- W1777267699 title "A bag-of-paths framework for network data analysis" @default.
- W1777267699 cites W1585433513 @default.
- W1777267699 cites W1662292321 @default.
- W1777267699 cites W1774304772 @default.
- W1777267699 cites W1966347620 @default.
- W1777267699 cites W1972636593 @default.
- W1777267699 cites W1975414584 @default.
- W1777267699 cites W1979104937 @default.
- W1777267699 cites W1992229444 @default.
- W1777267699 cites W1995876521 @default.
- W1777267699 cites W2001560396 @default.
- W1777267699 cites W2003031375 @default.
- W1777267699 cites W200645999 @default.
- W1777267699 cites W2019854450 @default.
- W1777267699 cites W2029778575 @default.
- W1777267699 cites W2030435519 @default.
- W1777267699 cites W2032558547 @default.
- W1777267699 cites W2033590892 @default.
- W1777267699 cites W2042178834 @default.
- W1777267699 cites W2044445294 @default.
- W1777267699 cites W2046253692 @default.
- W1777267699 cites W2047938094 @default.
- W1777267699 cites W2058068872 @default.
- W1777267699 cites W2063049279 @default.
- W1777267699 cites W2065229575 @default.
- W1777267699 cites W2098210428 @default.
- W1777267699 cites W2104535569 @default.
- W1777267699 cites W2105295920 @default.
- W1777267699 cites W2105543219 @default.
- W1777267699 cites W2113532220 @default.
- W1777267699 cites W2117684310 @default.
- W1777267699 cites W2122162561 @default.
- W1777267699 cites W2122597713 @default.
- W1777267699 cites W2126523478 @default.
- W1777267699 cites W2133161531 @default.
- W1777267699 cites W2133299088 @default.
- W1777267699 cites W2133442079 @default.
- W1777267699 cites W2140095548 @default.
- W1777267699 cites W2142124258 @default.
- W1777267699 cites W2151936673 @default.
- W1777267699 cites W2159929500 @default.
- W1777267699 cites W2161185832 @default.
- W1777267699 cites W2161984370 @default.
- W1777267699 cites W2165922980 @default.
- W1777267699 cites W2166319632 @default.
- W1777267699 cites W2169847772 @default.
- W1777267699 cites W2229900507 @default.
- W1777267699 cites W2234188328 @default.
- W1777267699 cites W2963414985 @default.
- W1777267699 cites W3101749733 @default.
- W1777267699 cites W4247782380 @default.
- W1777267699 doi "https://doi.org/10.1016/j.neunet.2017.03.010" @default.
- W1777267699 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28458082" @default.
- W1777267699 hasPublicationYear "2017" @default.
- W1777267699 type Work @default.
- W1777267699 sameAs 1777267699 @default.
- W1777267699 citedByCount "26" @default.
- W1777267699 countsByYear W17772676992017 @default.
- W1777267699 countsByYear W17772676992018 @default.
- W1777267699 countsByYear W17772676992019 @default.
- W1777267699 countsByYear W17772676992020 @default.
- W1777267699 countsByYear W17772676992021 @default.
- W1777267699 countsByYear W17772676992022 @default.
- W1777267699 crossrefType "journal-article" @default.
- W1777267699 hasAuthorship W1777267699A5001517214 @default.
- W1777267699 hasAuthorship W1777267699A5015460788 @default.
- W1777267699 hasAuthorship W1777267699A5059385158 @default.
- W1777267699 hasAuthorship W1777267699A5069766194 @default.
- W1777267699 hasAuthorship W1777267699A5080884576 @default.
- W1777267699 hasBestOaLocation W17772676992 @default.
- W1777267699 hasConcept C104317684 @default.
- W1777267699 hasConcept C105795698 @default.
- W1777267699 hasConcept C111208986 @default.
- W1777267699 hasConcept C11413529 @default.
- W1777267699 hasConcept C114614502 @default.
- W1777267699 hasConcept C126255220 @default.
- W1777267699 hasConcept C132525143 @default.
- W1777267699 hasConcept C149441793 @default.
- W1777267699 hasConcept C158448853 @default.
- W1777267699 hasConcept C17020691 @default.
- W1777267699 hasConcept C17744445 @default.
- W1777267699 hasConcept C184720557 @default.
- W1777267699 hasConcept C185592680 @default.
- W1777267699 hasConcept C199360897 @default.
- W1777267699 hasConcept C199539241 @default.
- W1777267699 hasConcept C22590252 @default.
- W1777267699 hasConcept C2776359362 @default.
- W1777267699 hasConcept C2777735758 @default.
- W1777267699 hasConcept C33923547 @default.